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Abstract. The elasticity pattern (E-pattern) of an age-structured animal comprising the elasticities E(fertility, m),

E(juvenile survival, Sj), and E(adult survival, Sa) is determined by age at first reproduction (a) and mean age of the15

reproducing females at the stable age distribution (

† 

A ). The E-patterns of sharks and marine turtles are characterized

by 

† 

A /a ratios < 2.0 [E(Sa)/E(Sj) < 1] and a proportional change in juvenile survival has the largest effect on

population growth (l1). Marine mammals and birds generally have 

† 

A /a ratios > 2.0 and adult survival has the

largest effect on population growth. Terrestrial turtles, mammals, and birds show a large range of 

† 

A /a ratios. The

fast-slow continuum concept is not useful to understand E-patterns of these animals in the context of a prospective20

elasticity analysis with the goal of providing management proposals. It is important to include the survival part in

the discounted fertilities of the Leslie matrix when calculating the E-pattern, otherwise post- and pre-breeding

censuses will yield different and biased E-patterns. This bias is largest for animals with a = 1 yr. The sum of the E-

pattern is 1 + E(m) and has to be normalized when graphed in an elasticity triangle for easy interpretation. Assuming

age-independent m and Sa, a new 3-term algebraic equation for 

† 

A  facilitates the understanding and interpretation of25

E-patterns.

Abstract 217 words; Text total including references and all captions for tables, figures, and appendices 15186.
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1. Introduction

Matrix population models have been used extensively for plants and animals to calculate elasticity patterns

(E-patterns) based on a prospective analysis with the goal of providing management proposals (Caswell 2001). The

elasticity matrix (E-matrix) elements give the proportional change of asymptotic population growth (l1) at the stable

age distribution from a proportional change of the corresponding matrix element in the projection A-matrix. For5

plants an E-pattern based on fertility, growth, and stasis is often used; whereas for age-structured animals an E-

pattern based on fertility, juvenile survival, and adult survival is biologically more meaningful (Heppell et al. 2000).

The elasticities of chosen stages (e.g. juveniles and adults) are obtained by calculating the elasticities of juvenile and

adult stages from a stage-based matrix model or by summing the elasticities in an age-based model (Leslie matrix)

over the appropriate age classes. Management proposals based on E-patterns are prospective and identify the vital10

rates that have the largest effect on population growth, whereas  retrospective analyses attempt to understand the E-

patterns comprehensively and answers how vital rates varied in the past, are varying now, or might vary in the

future. Many studies trying to provide management proposals based on prospective analyses are actually studying

life history variation in an evolutionary perspective (Caswell 2001).

There are conflicting statements whether the sum of the E-pattern is 1.0 or 1.0 + E(m). The sum = 1.015

proponents (de Kroon et al. 1986; Heppell et al. 2000; Caswell 2001, p. 231) are technically correct but they

excluded the survival term in the discounted fertilities. When survival in the discounted fertilities is included, the E-

pattern sum was 1 + E(m) (Heppell et al. 1996; Rockwell et al. 1997; Mollet and Cailliet 2003). Mollet and Cailliet

(2002, 2003) proposed that the E-pattern from a Leslie matrix should yield the same E-pattern as that calculated

empirically from the life history table (LHT) from which the Leslie matrix was constructed. This is equivalent to20

stating that the elasticities of survival alone add up to 1.0 which was first proved by Hamilton (1966). Pfister (1998)

recognized the problem that the discounted fertilities incorporate both fertility and survival rates but provided no

solution. Morris and Doak (2004) also advocated an alternative analysis based on the underlying vital rates instead

of the matrix elements of the projection matrix.

Matrix population models have only been  more recently used for elasmobranchs (sharks and rays), turtles,25

mammals, and birds. The Leslie matrix model was introduced for the lemon shark by Hoenig and Gruber (1990).

Stage-based deterministic and stochastic models were used by Brewster-Geisz and Miller 2000 and Cortés 1999,
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respectively, for the sandbar shark . Uncertainty in demographic models was incorporated into conservation of shark

populations by Cortés (2002). Life history theory and population model analyses were successfully applied to turtle

conservation and showed that juvenile survival has the largest effect on population growth (l1) (Crouse et al. 1987;

Crowder et al. 1994; Heppell et al. 1996; Heppell 1998). Heppell et al. (2000) developed a stage-based model for

mammals where the adults were combined in a single stage. They presented the E-patterns in an elasticity triangle5

(E-triangle) which indicated that E(adult survival) was largest for most species. Eberhardt (2002) applied a

sensitivity analysis based on an age-structured LHT to marine and terrestrial mammals and the spotted owl and

concluded that the sensitivity of adult survival was largest for all species. The E-patterns based on a stage-based

matrix model for marine and terrestrial birds indicated that adult survival had the largest effect on population growth

(Lebreton, and Clobert 1991; Russell 1999; Saether and Bakke 2000).10

Mollet and Cailliet (2003) showed that models that exclude survival to age 1 yr and combine adults in a

stage (e.g. Heppell et al. 2000; Saether and Bakke 2000) produce biased E-patterns that overestimate the importance

of adult survival. They also showed that the E-pattern of stage-based models with few stages should yield the same

E-pattern as those obtained from the corresponding Leslie matrices or LHTs. For example, the E-patterns of stage-

based models with few stages presented by Mollet and Cailliet (2002) and many publications before them were not15

correct. All assumed that the elasticities of survival (Si) equals the sum of the elasticities of stasis (Pi) and growth

(Gi) following eq. 9.103 in Caswell (2001) instead of using his eqs. 18.11 or 18.16 or calculating the E-pattern

empirically.

Here I first use a hypothetical but realistic example to demonstrate how to construct birth-pulse post- and

pre-breeding Leslie matrices from the LHT. The E-pattern is calculated in several ways to show that the results from20

post- and pre-breeding census models are only identical if the survival part in the discounted fertilities is included. I

use an E-triangle graph to demonstrate that the omission of the survival part in the discounted fertilities produces

biased E-patterns with largest bias for small age at first reproduction (a = 1 and 2 yr). Assuming age-independent m

and Sa, a new 3-term algebraic equation for the mean age of the reproducing females at the stable age distribution

(

† 

A ) is presented which facilitates the calculation, understanding, and interpretation of E-patterns. Finally, I present25

unbiased deterministic E-patterns for sharks (n ~ 66 populations), marine and terrestrial  turtles (n ~ 26), mammals
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(n ~ 68), and birds (n ~ 79) assuming a stable environment with time-independent vital rates and without density

dependence.

2. Materials and Methods

2.1 Hypothetical but realistic model species

I use a hypothetical but realistic model species to demonstrate the derivation of the Leslie matrices for a5

birth-pulse population using both post- and pre-breeding censuses in Fig. 2. The vital rates are summarized in Table

1.  Following Caswell (1989, p.7 footnote), I use the term fertility (m) rather than fecundity for the actual

reproductive performance (i.e. female offspring per female assuming a 1:1 sex ratio = litter size/2 if the species has

one litter per year) and regard these two terms to be synonyms. In this paper it will be more important to distinguish

between fertilities/fecundities that appear in the LHT and discounted fertilities/fecundities that appear in the Leslie10

matrix. Following Brewster-Geisz and Miller (2000), I use the term ‘discounted’ fertilities for Fi, to clearly indicate

that only a fraction of the mothers at time t will have offspring at time t + 1 in the post-breeding census and that only

a fraction of the offspring born at time t will survive to time t + 1 in the pre-breeding census. The calculation of the

Leslie matrix for birth-pulse post- and pre-breeding censuses from the LHT followed Caswell (2001, eqs. 2.40, 2.42,

and 2.43). The z-transformed life cycle graphs were drawn with PopTools (add-in to Excel) and annotated following15

Caswell (2001, p. 178). The calculation of the eigenvalues (l1 - lomega), the eigenvectors (w1 and v1) of the largest

eigenvalue (l1), and the E-matrix were carried out with the help of PopTools. Note that omega (w) is the last year of

reproduction whereas w1 is the right eigenvector or age-structure vector corresponding to l1. The index 1 in w1 will

be dropped henceforth because only eigenvectors for l1 will be of interest here but the index 1 in l1 will be retained

to distinguish it clearly from the variable l in the characteristic function (CF). Special attention was paid to the20

calculation of the E-pattern which is obtained by summing over the appropriate matrix elements of age-classes in the

E-matrix. This was carried out seven different ways for both post- and pre-breeding censuses (Fig. 2H, columns 1 -

5 left and right, respectively; duplicate calculations in two columns).

The discounted fertilities in the post- and pre-breeding Leslie matrices are Fi = m Si and Fi = m S1,

respectively (Caswell, 2001, p. 27). To demonstrate better the importance of taking into account the survival rates in25

the discounted fertilities when calculating the E-pattern, all the possible E-patterns of the hypothetical a = 1 yr

species in Fig. 2 were contrasted with the E-patterns of additional hypothetical but realistic model species with a =
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2, 5, and 15 yr. I calculated and then graphed the E-pattern using 4 scenarios for each a in Fig. 3. Scenarios 1 and 2

used post-breeding and pre-breeding censuses assuming that the elasticities add up to 1.0 + E(m) to discover if this

would produce identical E-patterns as expected; and scenarios 3 and 4 used post-breeding and pre-breeding censuses

assuming elasticities add up to 1.0 (current theory, e.g. de Kroon et al. 1986; Caswell 2001, p. 231) which was

expected to produce different E-patterns. The vital rates for these additional hypothetical species are summarized in5

Table 1 and were chosen based on graphical considerations.

2.2 Elasticity triangle (E-triangle)

The E-triangle is a three-way proportional graph for graphing the E-pattern of a species comprising 3

elasticities as a single point (Silvertown et al. 1992; Heppell et al. 2000). Silvertown et al. 1992 used E1 = E(F), E2 =

E(P, stasis), and E3 = E(G, growth) suitable for plants. Heppell et al. (2000) modified this to E1 = E(m), E2 = E(Sj),10

and E3 = E(Sa) which is more meaningful for age-structured animals. The elasticities have to be normalized first if

the calculation produces elasticities that do not sum to 1.0. The E-triangle is best understood by considering the

elasticity of adult survival E(Sa) first, which was chosen to be identical with the y-axis following Heppell et al.

(2000). The y-axis measures E(Sa) from the bottom side [E(Sa) = 0] to the top corner [E(Sa) = 1]. E(m) and E(Sj) are

measured from the right and left sides of the equilateral triangle, respectively, and reach value 1.0 at the opposite15

corners on the bottom side. For graphing it is easier to calculate x for each data triplet and it is given by x = {E(Sa) +

[E(Sj)/cos(p/3)]}/tan(p/3) using geometry. The E-triangle is half-empty if the E-patterns are unbiased and provides

space for hypothetical species with a < 1 yr and an annual reproductive cycle that requires a projection interval of 1

yr. This is not the case in Fig. 3 because this figure includes biased E-pattern but applies to Figs. 4 and 5 which only

show unbiased E-patterns.20

Three sets of equations that define isometric lines (contours) facilitate the interpretation of the normalized

E-pattern. They are obtained by determining the conditions that guarantee that any 2 of the 3 elasticities comprising

the E-pattern have the same value. The most useful set of contours is defined by 

† 

A /a = constant (‘iso-

† 

A /a’s’). If

† 

A /a = 2.0, then En(Sa) = En(Sj) (E3 = E2). If 

† 

A /a > 2.0, adult survival has a larger effect on population growth than

juvenile survival; if 

† 

A /a < 2.0, then the reverse holds. It is easy to calculate the exact E3/E2-ratio from the 

† 

A /a25

value because E3/E2 =  (

† 

A /a) - 1 (eq. A2.13.1). The second set of contours is defined by En(Sj) = a En(m) (‘iso-

a’s’). If a is 1.0 yr, then En(Sj) = En(m) (E2 = E1). As a increases, En(Sj) becomes a times as large En(m). A third set
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of contours, defined by 

† 

A  - a = constant (‘iso-(

† 

A -a)’s’), appears to be less useful. The 

† 

A  - a = 1 contour defines

species for which En(Sa) = En(m) (E3 = E1).

2.3 Vital rates used for shark, turtle, mammal, and bird populations

The vital rates used for all shark, turtle, mammal, and bird populations used in this study and their sources

are summarized in Appendix 1 which includes the scientific names. For many species, I used a different model for5

the calculation of population growth, generation times, and E-pattern than that used in the source publication and

whenever possible the results based on the same number of species were compared in Table 2. I used a liberal

approach for the definition of a population. In most cases it was a species with a particular geographical location but

in a few cases a species with different vital rates for demonstration purposes were counted as different populations.

The vital rates of sharks were based on the 41 populations listed in Cortés (2002). Seven of these species10

had a small, fractional mean a (~1.5, ~2.5, and ~3.5), for which I created two populations each with a rounded up

and down to the next integer. The vital rates used and their sources for 16 additional shark and ray populations are

given in Appendix 1. I used age-independent fertility and survival rates and the same survival rates for juveniles and

adults following Mollet and Cailliet (2002): S = exp(-M) with M = -ln (0.01)/w for the mortality rate (M) which

leaves ca. 1.0% of the population in the last age class at the stable age distribution if l1 is close to 1.0. Two15

populations each of scalloped hammerhead and shortfin mako with widely different a were used as demonstration

species to explore the effect of a on the E-pattern in Figs. 4 and 5.

The vital rates for 22 marine and terrestrial turtles came from Heppell (1998, Tables 2 and 4) and were

supplemented with more recent data for additional populations of marine turtles (see Appendix 1 for vital rates used

and their sources). If longevity of a turtle species was not given, I used w = 6a yr. Her Table 4 did not include20

fertility and juvenile survival of 10 terrestrial turtles and they were chosen such that l1 = 1.0. I followed Heppell

(1998) and used 2 populations of painted turtles with 3 sets of vital rates as a demonstration species in Figs. 4 and 5

to show that the Sa/l1 ratio or the corresponding (l1 – Sa) difference has a large influence on 

† 

A  and thus the E-

pattern. For comparison purposes only, the vital rates used by Tucker (2000) in a 5-stage model for six species of

crocodiles were used in a Leslie matrix to calculate the E-pattern.25

The vital rates of 50 species of marine and terrestrial mammals came from Heppell et al. (2000, Ecological

Archives E081-006) and were supplemented by 16 mammal populations from Eberhardt (2002). Heppell et al.
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(2000) used a stage-based model with all the adults in a stage whereas I used a LHT or the corresponding Leslie

matrix (Mollet and Cailliet 2002). Eberhardt (2002) used the characteristic equation of the LHT which is equivalent

to using an LHT in an Excel spreadsheet or a Leslie matrix in PopTools as I have done. He calculated sensitivities

whereas I calculated elasticities (proportional sensitivities) of vital rates. He used survival to age-at-first

reproduction (la) whereas I used juvenile survival Sj as a parameter. The sea otter with a = 3.5 yr was treated as two5

populations with a = 3 and 4 yr. A third set of killer whale vital rates came from Caswell (2001, p.117) and the

killer whale was used as a demonstration species in Figs. 4 and 5 to show the effect of a shorter reproductive period

with corresponding larger fertility.

The vital rates of bird populations came from Russell (1999, his Table 2 with 26 marine species) and

Saether and Bakke (2000, Ecological Archives E81-005-A1 with 49 marine and terrestrial species). This bird sample10

included 11 duplicate marine bird species with different vital rates. When S1 was not available in Saether and Bakke

(2000), I used the value given in Russell (1999) or 0.50. The pseudo-stochastic E-patterns (see A2.3 for details) give

the E-patterns if S1 is calculated such that l1 = 1.0 as was done by Saether and Bakke (2000) for these species. Both

Russell (1999) and Saether and Bakke (2000) used a stage-based model with a stage for the adults. They used Pa =

Sa for the adult self-loop that produces the diagonal matrix element in the right hand corner of the projection matrix,15

rather than Pa = Sa(1 - g2) as given in Caswell (2001, p.160), which implies infinite longevity (w) (Heppell et al.

2000). I used w = 6a yr as a more reasonable longevity value for birds. However, w = 100 yr was used as an

approximation for infinite longevity in preliminary calculations and in the final analysis it was used for two bird

species to demonstrate the effect of such large longevity values on the E-pattern (golden plover and emperor

penguin in Figs. 4 and 5). For the lesser snow goose in Saether and Bakke, (2000, ID #3), I also used data for a20

population with age-dependent fertility (m) from Rockwell et al. (1997) and calculated age-independent m = 0.677

that produces the same l1 = 1.021, again using w = 6a yr rather than w = • yr of the model used by Rockwell

(1997). Vital rates for an additional spotted owl population came from Eberhardt (2002, ID # 16).

2.4 Demographic calculations

For about 170 out of the 240 populations a LHT was setup in an Excel spreadsheet and solved. The25

corresponding Leslie matrix and various stage-based models were constructed and solved with the PopTools

program (add-in to Excel; Mollet and Cailliet 2002). I used a PopTools version that does not calculate 

† 

A , only
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generation time T = ln (R0)/ln(l1) (R0 = net reproductive rate) and m1 (the mean age of the reproducing mothers of a

cohort). These preliminary calculations also served as a check on the final results. The final calculations were

carried out with GnuOctave (Eaton and Rawlings 2003; http://www.octave.org/), a free software package

corresponding to MATLAB. GnuPlot (a free graphing program, http://www.gnuplot.info/) and AquaTerm (a free

graphic terminal, http://sourceforge.net/projects/aquaterm/) were used for graphing. The vital rates for all 2405

populations were entered into an Octave data file. An Octave script constructed the Leslie matrix A = F + T of

dimension (w x w, largest size 210 x 210) for each species from the vital rates and then the Leslie matrix was solved.

Appendix 2.8 gives sample code that includes the calculation of 

† 

A  directly from the Leslie matrix (eq. A2.19). E-

patterns calculated from m1 instead of 

† 

A  are termed pseudo-stochastic E-patterns (see Appendix A2.3 for

explanation, eqs. (A2.11)).10

3. Results

3.1 Calculation of the E-pattern and 

† 

A  from the characteristic function

Equations for the normalized elasticities En(m), En(Sj), En(Sa) (the E-pattern), as functions of a and 

† 

A , were

derived from the characteristic function f (l) (CF) of a life-cycle graph that represents a Leslie matrix derived from

an age-structured life history table assuming age-independent m and Sa (see Appendix 2 which includes explicit15

formulas for the elasticities E(a), and E(w)):

En(m) = En,1 = 1/(

† 

A  + 1) (A2.9.1)

En(Sj) = En,2 = a/(

† 

A  + 1) (A2.9.2)

En(Sa) = En,3 = (

† 

A  - a)/(

† 

A  + 1) (A2.9.3)

† 

A = a +
Sa

(l1 - Sa )
-

(w -a +1)(Sa /l1)
(w-a +1)

(1- (Sa /l1)
(w-a +1))

(A2.4)20

The E-pattern comprising En(m), En(Sj), and En(Sj) in eq. (A2.9), needed for a prospective analysis, is

determined by a and 

† 

A  alone, a major simplification because both a and 

† 

A  are well-defined and understood for the

animal species in this study. Equations (A2.9) give the exact functional relationship between En(m), En(Sj), or En(Sj)

and a & 

† 

A . Graphs of any component of the E-pattern versus generation time 

† 

A  with a treated as a parameter are

best to understand the E-pattern. I suggest that it is not helpful to graph the components of the E-pattern against any25

vital rate, generation time, or population growth rate for different species and then attempt to establish correlations.
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It is often easy to guesstimate if 

† 

A  will increase or decrease in scenarios that change vital rates of a species

and therefore the effect on the E-pattern is readily estimated. Given a for a species and an estimate for 

† 

A  already

yields an estimate of the complete E-pattern. If 

† 

A  is difficult to estimate without solving the Leslie matrix first, 

† 

A 

in eqs. (A2.8) can be replaced with m1 and a pseudo-stochastic E-pattern is obtained (see Appendix A2.3 eqs. A2.11

for details). A further advantage of these formulas for the E-pattern is that the E-matrix is not needed and fractional5

a values can be used. It is also easy to estimate the E-pattern appropriate for projection intervals (PI) that agree with

the reproductive cycle (RC) by using estimates of a and 

† 

A  based on units of the PI (e.g. 5 yr instead of 1 yr)

combined with actual instead of annualized fertility.

All three elasticities and 

† 

A  are no longer explicit functions of m and Sj and the E-pattern (eqs. A2.9) is not

even an explicit function of Sa and l1. However, 

† 

A  is a function of l1, which itself is a function of all the vital10

parameters and 

† 

A  appears in the equations of all three elasticities. This is the reason that elasticities appear to be

difficult to predict; but they can in fact be calculated as shown and their interpretation becomes considerably easier

by concentrating on the 3-term formula for 

† 

A , which is exact for species where no age-dependent vital rates are

available and age-independent m and Sa are assumed as a first approximation. Although (A2.4) is only valid if Sa and

m are age-independent, the equations for the E-pattern (eqs. A2.9) are exact if 

† 

A  is calculated from the defining15

equation 

† 

A  = Sx xl-xlxmx (sum over all x = ages) or from the equivalent equation 

† 

A  = <w,v> (eq. A2.14) where

<w,v> is the special scalar product of age-structure vector w and reproductive value vector v when choosing w1 = v1

= 1.0 (see Appendix A2.5 for details, eq. A2.14).

The first term in eq. (A2.4) for 

† 

A  is age at first reproduction (a). The second term can be written as

(Sa/l1)/[1 - (Sa/l1)] and indicates that the Sa/l ratio, which also appears in the third term, is an important factor in this20

equation for 

† 

A . The third term can be called a correction term and is only zero if w Æ •. If the formula 

† 

A  = a +

Sa/(l1 -Sa) (A2.15.1) is used for a stage-based model that was derived from an age-structured LHT or Leslie matrix,

then it implies that w Æ •. This is not a good approximation for many species because w is finite and the third term

cannot be neglected, in particular if Sa is close to 1.0. The use of a stage-based model with Sa (instead of Pa = Sa (1 -

ga) as a terminating element on the diagonal of the projection matrix instead of the fully age-structured Leslie matrix25

with w sufficiently large to approximate the w Æ • solution does not change this.



10

Although the third term cannot be neglected if w is finite, in particular if Sa/l1 Æ 1, the second term and

thus 

† 

A  becomes large if (l1 – Sa) is small. It was sensible to calculate the 

† 

A /a ratio and expect that it would also

play an important role in E-patterns and I show below that it is closely related to the E3/E2 ratio, the elasticity ratio

of adult and juvenile survival.

Equation (A2.4) for 

† 

A  appears to be ill-defined as (l1 - Sa) Æ 0 and/or Sa/l1 Æ 1 because it appears that 

† 

A 5

= a + • - •. However, the critical value exists and is (a + w)/2. A mathematical proof is given in Appendix 2 (eq.

A2.5.2) but my derivation using biological arguments is more illustrative. A viable population (l1 ≥ 1.0) where ages

at first and last reproduction are both a (w /a Æ 1) is a population with only one litter (Sa = 0 and thus Sa/l1 = 0).

Adult females die after they have had their first and only litter with sufficient offspring to produce l1 ≥ 1.0, and we

must have 

† 

A minimum = a (

† 

A minimum /a = 1). At the other extreme are  populations with Sa/l Æ 1 (w /a > 1). The10

adults have constant age structure (same number of adults in each age class between a and w) and at age w they

either become post-reproductive or die. The mean age of the reproducing females in this case must be 

† 

A  = 

† 

A critical =

(a + w)/2 (A2.5.1), the critical value of interest. When Sa/l Æ 1, the w /a ratio may potentially become very large

(Æ •) but w is finite and is often known. This shows that in addition to the Sa/l ratio, the w /a ratio will be

important also.15

The ratio E3/E2 = En,3 /En,2 is related to the (

† 

A /a)-ratio by the following simple equation:

E3/E2 = E(Sa)/E(Sj) = (

† 

A /a) - 1  (A2.13.1)

which using eq. (A2.4) for 

† 

A  gives:

† 

E3 / E2 = (1/a) (Sa /l1)
(1- (Sa /l1))

-
(w -a +1)(Sa /l1)

(w-a +1)

(1- (Sa /l1)
(w-a +1))

È 

Î 
Í 

˘ 

˚ 
˙ (A2.13.2)

Increasing the mean age of the reproducing females (

† 

A ) must increase the importance of the adults on population20

growth and eq. (A2.13.1) expresses this in the form of a simple linear equation between the E3/E2 ratio and 

† 

A /a.

Again, I suggest that it not helpful to graph this or any other ratio of elasticities for different species against vital

rates, generation times, or population growth rates and then attempt to establish correlations. Instead, more general

contour graphs for the function E3/E2 will display the crucial features of E-patterns and help to understand how the

E-patterns are related to the vital rates. Contour plots for E3/E2 [= (

† 

A /a) – 1], while still fairly complicated, are best25
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suited to demonstrate the importance of the Sa/l1  and w /a ratios in eq. (A2.13.2) for E3/E2  and thus the E-pattern

(Figs. 1A, 1B, 1C, and 1D for w /a = 3.0, 6.0, 9.0, and 12.0, respectively). That is w in eq. A2.13.2 is substituted

with ka (k = 3.0, 6.0, 9.0, and 12.0 or any other value as required) and the E3/E2 values are calculated as a function

of x = Sa/l1 and y = a and graphed as contours (lines with the same E3/E2-values).

The vertical contour lines when x = Sa/l1 Æ 1 have E3/E2 values of 1.0, 2.5, 4.0 and 5.5 in Figs. 1A, 1B,5

1C, and 1D, respectively. These value agree with the critical values of E3/E2 that can be calculated from (A2.5.1).

The first interesting fact is that for w /a £ 3, E3 can at most be equal to E2 (E3/E2 £ 1) for the populations of most

interest which have Sa/l1 £ 1 (Fig. 1A is for w /a = 3 ). As we shall see, most shark populations have w /a < 3 and

therefore elasticity of juvenile survival (E2) must be largest for these populations without any further considerations

if eq. (A2.4) for 

† 

A  is applicable. Second, for given y = a when moving horizontally to the right in any subplot in10

Fig. 1, E3/E2 increases as x = Sa/l1 increases (i.e. l1 - Sa decreases). Elasticity of adult survival (E3) becomes more

important compared to elasticity of juvenile survival (E2) as the difference (l1 - Sa) becomes smaller.

When Sa/l1 Æ 1 (Sa - l1 Æ 0) the vertical contour line has been reached (which is valid for any a.). Third, for given

Sa/l1 moving vertically in the y = a direction, there are 3 possible results which are determined by opposing

mathematical factors depending on the value of Sa/l1 (see Appendix A2.4 for details).15

3.2 Calculation of E-patterns for post- and pre-breeding censuses

The E-patterns for post- and pre-breeding censuses are only identical, and therefore unbiased as required, if

the survival term in the discounted fertilities is included which is demonstrated step by step in Fig. 2. This

hypothetical species with a = 1 yr and other vital rates as given in Table 1 has population growth rate l1 = 1.59, net

reproductive rate R0 = 2.31, and ‘generation times’ 

† 

A  = 1.57 yr (an age), T = 1.80 yr (a time), and m1 = 2.08 yr (an20

age), with 

† 

A /a = 1.57 (Fig. 2A, LHT).

The individuals in the first age-class in the post-breeding census are all 0 yr old and have survival rate Sj =

0.5 during the next projection interval (PI), whereas in the pre-breeding census they have just reached age 1 yr and

have adult survival rate Sa = 0.6 in the next PI (Figs. 2B & C, Leslie matrices). However, it is nevertheless the first

year age-class in both censuses. This is best understood if we recall that post- and pre-breeding censuses were25

ingeniously constructed as limit processes where Si = l(i + p)/l(i – 1 + p) with p Æ 0 and p Æ 1 for post- and pre-
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breeding censuses, respectively (Caswell 2001 p. 27). In this a = 1 yr example, the first age-class is also the age-

class with the maturing females for both post- and pre-breeding censuses i.e. juveniles that become mature and have

their first litter in the next PI.

The right eigenvector (age structure) for the post-breeding census corresponding to the largest and real

eigenvalue l1 can be read off the z-transformed life cycle graph (Fig. 2D, left): w1 = 1, w2 = S1/l1 = 0.3140, w3 =5

(S1/l1)(S2/l1) = 0.1183 and so forth for w4 - w5. The left eigenvector for the post-breeding census (reproductive

values) can be read off the transposed life cycle graph (not shown) with all the arrows reversed: v1 = 1, v5 = mS5/l1 =

0.7536, v4 = mS4/l1+(S4/l1)(mS5/l1) = 1.0375 and so forth for v3 - v2. The F1/l1 self-loop should not be absorbed, as

would be the case for a stage-based model with a P1/l1 self-loop; therefore, surprisingly, F1 = mS1 does not appear in

the formulas for vi. However, the presence of the F1/l1 self-loop (reproduction at age 1.0 yr) produces a larger l110

and thus affects the values of w2 - w5 and v2 - v5, although the formulas for  vi with and without the F1/l1 self-loop are

the same. The complete right and left eigenvectors for both post- and pre-breeding censuses were calculated with

PopTools in Fig. 2E.

The right and left eigenvectors in the pre-breeding census are different because juvenile survival (S1) differs

from adult survival (S2 - S5, all the same in this example) (Fig. 2E, right). Although w and v of post- and pre-15

breeding censuses are different, the product terms (wivi) and thus 

† 

A  = <w,v> are the same as required (eq. A2.14).

Fig. 2E includes the results for 

† 

A  from three different calculations. In this example the result using eq. (A2.4, valid

only when m and Sa are age-independent) agrees with 

† 

A  = <w,v> (eq. A2.14) and 

† 

A  from eq. A2.19, (Octave

solution) because m and Sa were assumed to be age-independent. The PopTools solution of the Leslie matrices

includes net reproductive rate R0 and the generation time m1 that should and do agree with the results from the LHT.20

The E-matrices for post- and pre-breeding censuses are identical but the E-patterns are only the same if the

survival term in the discounted fertilities is included (Figs. 2F & 2G and 2H). The calculation of the E-pattern (E1,

E2, and E3) requires that we sum over different matrix elements in the E-matrix for post- and pre-breeding censuses.

The E-patterns will not be the same if presently prevalent theory is followed (deKroon et al 1986; Heppell et al.

2000; Caswell 2001, p. 231). In this case, the elasticities of the E-matrix are added over the appropriate age-classes25

without taking into account of the survival term in the discounted fertilities and the sum is 1.0. This might be

considered controversial and I therefore calculated the E-pattern a total of seven ways and summarized the results in
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five columns (with duplicate results in 2 columns) for both post- and pre-breeding censuses, first including survival

in the discounted fertilities (Fig. 2H, columns 1-3, respectively) and then excluding them (Fig. 2H, columns 4-5,

respectively, see figure caption for details).

The difference between post- and pre-breeding census E-patterns are considerable in this hypothetical but

realistic a = 1.0 yr species. For example, biased E2 = 0.239 (Fig. 2H, columns 4 or 5 on left) in the post-breeding5

census and biased E2 = 0 (Fig. 2H, columns 4 or 5 on right) in the pre-breeding census to be compared with the

unbiased normalized E2 = 0.390 (Fig. 2H, column 3 left or right). The ratio of the results in the fourth and third

columns were calculated as an indicator of bias. The biased E-pattern for the a = 1 yr example using a post-breeding

census overestimates E1 and underestimates E2 and E3 (Fig. 2H, column 4/3 on left). However, in general, the biased

E-patterns in a post-breeding census overestimate both E1 and E2 and underestimate only E3 because the bias of E210

depends on a and changes sign if a > 1. The biased E-pattern of the a = 1 yr example using a pre-breeding census

overestimates E1 and E3 and underestimates E2 (Fig. 2H, column 4/3 on right). The sign of the E2-bias in the pre-

breeding census does not depend on a but the E2-bias will not be as extreme in general as for this a = 1 yr example

with ‘4/3’ = 0. The E2-bias in the pre-breeding census is extreme for a = 1 yr because the E-pattern without

inclusion of first year survival S1 (in F1) makes it appear as if survival to age 1 yr has no effect on the E-pattern (E215

= 0).

Finally, the relationships (eqs. A2.12 and A2.13.1) between elasticity ratios and 

† 

A  & 

† 

A /a were applied as

checks (Fig. 2H, last two lines, left and right). These relationships are also helpful for the interpretation of E-

patterns: 

† 

A  = E2/E1 + E3/E1 = 1.5663 and 

† 

A /a = 1 + E3/E2 = 1.5563 yielding the same result in this example

because a = 1. It is important to point out that the biased E-patterns have different elasticity ratios and they can be20

calculated from eqs. (A2.20) and (A2.21) for post- and pre-breeding censuses, respectively.

The large biases in the E-pattern of an a = 1 yr species, when survival in the discounted fertilities is

excluded, is easier to understand if graphed in the E-triangle and compared with the results of identical calculation

for species with larger a (Fig. 3). The unbiased E-patterns for the hypothetical a = 1 yr species for post- and pre-

breeding censuses coincide and fall on the a = 1 yr contour whereas the biased E-pattern in the pre-breeding census25

falls on the meaningless a = 0 yr contour (right side of triangle without an a-label) and the biased E-pattern for the

post-breeding census is located in-between on the a ~ 1/2 yr contour (not shown). Similarly, for the hypothetical a =
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2 yr species, the unbiased E-patterns coincide and are located on the a = 2 yr contour whereas the biased E-pattern

for the pre-breeding census is located on the a = 1 yr contour and the biased E-pattern for the post-breeding census

is located in-between on the a ~ 1.5 yr contour (not shown). As a increases the biases decrease and the four E-

patterns begin to coalesce. For the a = 5 yr example, the differences may already be negligible for practical purposes

(e.g. management proposals) and the differences are certainly negligible for practical purposes if a = 15 yr.5

3.3 E-patterns for sharks, turtles, mammals, and birds

The elasticity pattern for sharks, turtles, mammals, and birds show distinct differences (Fig. 4) which

remain in the pseudo-stochastic E-patterns (Fig. 5). The E-patterns of sharks and marine turtles are characterized by

† 

A /a ratios < 2.0 (E3/E2 < 1.0) and a proportional change in juvenile survival (Sj) has the largest effect on population

growth (l1). Marine mammals and birds generally have 

† 

A /a ratios > 2.0 (E3/E2 > 1.0) and adult survival (Sa) has10

the largest effect on population growth. Terrestrial turtles, mammals, and birds show a large range of 

† 

A /a ratios, in

particular for mammals and birds with early reproduction at a = 1 yr (Figs. 4 and 5). The contour graphs for E3/E2 in

Figs. 1 A, B, C, and D for the w /a ratios 3, 6, 9, and 12, respectively are helpful to better understand the E-patterns,

in particular Fig. 1A for w /a = 3.

The E-patterns of sharks and rays are similar and elasticity of juvenile survival (E2) is largest for all (Fig.15

4A). The mean 

† 

A /a = 1.31 (n = 66) is much smaller than 2.0 and the coefficient of variation CV = 9.9% is small

(Table 2, ID #1). The range of

† 

A /a is from 1.06 for scalloped hammerhead to 1.75 for sandtiger and even the largest

value is less than 2.0. The w /a ratio of 70% of these shark populations is £ 3.0 (mean 2.68, CV = 45%, range 1.13 –

~5; Table 2, ID #1), Sa/l1 is less than 1.0 for all sharks and therefore E2 has to be largest (Fig. 1A, the critical,

vertical E3/E2 contour has a value of 1.0). The remaining 30% of these sharks with w /a > 3.0 have x = Sa/l120

sufficiently smaller than 1.0 such that in the appropriate contour plot E3/E2 will be less than 1.0 (given w /a and a).

The pseudo-stochastic calculation produces similar results (Fig. 5A). However, species with l1 > 1 have moved

closer to or onto the 

† 

A /a = 2 contour which is most noticeable for the Australian sharpnose populations with a = 1

yr and large l1 = 1.68. Species with l1 < 1 have moved further below the 

† 

A /a = 2 contour but this is difficult to see

in Fig. 5A because the movement is toward the area with most of the data. Surprisingly at first, a has little effect on25

the E-pattern, in particular the E3/E2 ratio (Figs. 4A and 5A, special cases). However, as shown in Fig. 1A, if w /a £
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3.0 and Sa/l1 < 1.0 then E2 has to be largest without further considerations (including any value of a). Large

differences for a were reported for different populations of scalloped hammerhead (4 and 15 yr) and shortfin mako

(7 and 18 yr) and depend on whether 2 or 1 vertebrae band-pair(s) were used for the length versus age growth curve.

All four E-patterns have 

† 

A /a < 2.0, for scalloped hammerhead 

† 

A /a = 1.21 and 1.06, respectively (E3/E2 = 0.21 and

0.06), for shortfin mako 1.39 and 1.28, respectively (E3/E2 = 0.39 and 0.28) (Appendix 1). Obviously, species with5

larger a have larger E2/E1 ratios because E2/E1 = a (eq. A2.7).

The mean 

† 

A /a ratio and its coefficient of variation (1.36, CV = 11%, n = 7 only) of marine turtles are

smaller than those of terrestrial turtles (2.10, CV = 29%, n = 20) (Table 2, IDs #6 & #7). Marine turtles have  

† 

A /a

ratios smaller than 2.0 (range 1.257 – 1.61, corresponding to E3/E2 = 0.257 – 0.61) and the elasticity of juvenile

survival (E2) is largest (Table 2, ID #6; Fig. 4B). Again this can be understood in terms of the w /a ratio which is10

less than 3.0 for the three turtle populations for which both a and w were reported. For the other four populations

(Loggerhead and Kemps’s Ridley for which I used  w = 6a), x = Sa/l1 was sufficiently smaller than 1.0 such that

E3/E2 is less than 1.0 (Fig. 1B, given w /a and a).

For terrestrial turtles, I used w /a = 6 and Fig. 1B is applicable for all. However, in this case the critical,

vertical E3/E2 contour in Fig. 1B has a value of 2.5 and therefore Fig. 4B which shows the 

† 

A /a contour of value 2.015

is at first more illustrative. The 

† 

A /a ratio range of terrestrial turtles (1.261 for geometric tortoise to 3.39 for

snapping turtle A, corresponding to E3/E2 = 0.261 – 2.29) is large and the E-pattern for a particular species appears

difficult to predict (Table 2, ID #7). Three sets of vital rates for two populations of painted turtles demonstrate that

the E-pattern is most effected by the l1/Sa ratio or the corresponding l1 - Sa difference. All three painted turtle

populations have w /a = 6 and similar a = 7 and 8 yr. Fig. 1B is now helpful to explain why they have such different20

† 

A /a ratios in Figs. 4B and 5B by moving from left to right for a ~ 7.5 yr (in Fig. 1B). The smallest Sa/l1 ratio (0.73;

largest difference l1 - Sa = 0.2822) was based on updated vital rates for a painted turtle population from southeastern

Michigan which included smaller Sa = 0.76 (Tinkle et al. 1981) and produced the smallest 

† 

A /a = 1.38 (E3/E2 =

0.38). A proportional change in juvenile survival (Sj) has by far the largest effect on population growth. The original

painted turtle population from southeastern Michigan with S = 0.83 (Wilbur 1975) gave Sa/l1 = 0.83 (l1 - Sa  =25

0.1712) and produces intermediate 

† 

A /a = 1.69 (E3/E2 = 0.69) but juvenile survival still has the largest effect on
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population growth. The largest Sa/l1 ratio (0.950; smallest difference l1 - Sa = 0.0505) was for a population from

central Virginia (Mitchell 1988) with large Sa = 0.96 which produced the largest 

† 

A /a = 2.66 (E3/E2 = 1.66). A

proportional change in adult survival (Sa) has by far the largest effect on population growth for this population.

The w /a ratios of marine and terrestrial mammals show large variation (mean 6.49, CV = 46%, range 2.40

– 19.0; Table 2, ID #11) and therefore the contour plots given in Fig. 1 are less useful. The E-patterns shown in Fig.5

4C which includes the 

† 

A /a = 2.0 contour becomes more illustrative. Marine and terrestrial mammals generally have

† 

A /a ratios larger than 2.0 (2.53, CV = 23%, n = 17; and 2.34, CV = 32%, n = 51, respectively) and a change in

adult survival has the largest effect on population growth (Table 2, IDs #12 & #13; Fig. 4C). Terrestrial mammals,

in particular those with a = 1 or 2 yr, have a large 

† 

A /a range (1.21 for snowshoe hare to 4.96 for little brown bat).

The 

† 

A /a range is smaller for marine mammals (1.68 for killer whale to 3.77 for pilot whale) and for many10

marine mammals E3 is largest. This is as expected because Sa/l1 is close to 1.0. However, large E3 can be due to

overestimating the length of the reproductive period by equating it with longevity with a corresponding

underestimate of fertility. The calculations using 3 different sets of orca vital rates demonstrate this in Figs. 4C and

5C. All 3 populations have Sa/l1 close to 1.0 (Appendix 1). The results using w = 60 yr (w /a = 4.6) and m = 0.070

following Heppell et al. 2000 with Sa/l1 = 0.967 (l1 - Sa = 0.033) produced 

† 

A /a = 2.34 (E3/E2 = 1.34). The data15

from Eberhardt 2002 (w = 50, w /a = 4.0 and m = 0.11) with Sa/l1 = 0.959 (l1 - Sa = 0.043) already produced 

† 

A /a

smaller than 2.0 (1.87; E3/E3 = 0.87). Finally, using the more realistic w = 36 yr (w /a = 2.6; reproductive period T3

= 22 yr) and m = 0.12 from Brault and Caswell (1993) with Sa/l1 = 0.968 (l1 - Sa = 0.034) indicated that 

† 

A /a

becomes even smaller (1.68; E3/E2 = 0.68) and now juvenile survival clearly has the largest effect on population

growth.20

I assumed w /a = 6 for all but one marine and terrestrial bird population. However, the contour plots given

in Fig. 1B are less useful because the critical, vertical E3/E2 contour has value 2.5. The E-pattern graphs in Figs 4D

and 5D which include the 

† 

A /a = 2.0 contour are more illustrative. The mean 

† 

A /a ratio of marine birds (2.44, CV =

14%, n = 46) has a considerably smaller coefficient of variation (CV) than that of terrestrial birds (2.48 CV = 46%, n

= 31) (Table 2, IDs #18 & #19; Fig. 4D). Marine birds generally have an 

† 

A /a ratio larger than 2.0 but its range25

(1.71 for great skua to 3.16 for emperor penguin corresponding to E3/E2 = 0.71 – 2.16) includes a few birds with
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† 

A /a ratio < 2.0. The 

† 

A /a ratio range of terrestrial birds (1.55 for great tit to 7.80 for spotted owl, corresponding to

E3/E2 = 0.55 – 6.80) is considerably larger because many a = 1 yr terrestrial birds have small 

† 

A /a ratios and

juvenile survival has the largest effect on population growth. The golden plover and the emperor penguin

demonstrate that the 

† 

A /a ratio increases considerably (

† 

A /a = 4.0 Æ 12.9 and 3.2 Æ 4.7, respectively) if longevity

is increased from w = 6a yr to a less reasonable w = 100 yr to simulate w = • yr in a stage-based model that uses Pa5

= Sa for the diagonal matrix element of the adult stage.

4. Discussion

4.1 E-patterns that use 

† 

A  and include survival in the discounted fertilities

The use of 

† 

A  simplifies the formulation of E-patterns and the 

† 

A /a and E3/E2 ratios (E3/E2 = 

† 

A /a - 1) help

in the understanding of E-patterns for age-structured animal populations. The equations (A2.8) for the E-pattern10

eliminate the need to calculate the E-matrix and yield E-patterns that are the same for post- and pre-breeding Leslie

matrix. They also agree with the E-pattern that can be calculated empirically from the corresponding life history

table (LHT). Importantly, I have shown that many reported E-patterns are more or less biased because the

contributions of the survival terms in the discounted fertilities were omitted. While Caswell (2001) is an outstanding

volume covering all aspects of matrix population models, my analysis suggests two improvements for the elasticity15

analyses of age-structured animal populations. First, a formulation with 

† 

A  simplifies the E-pattern and facilitates

interpretation. Second, the calculation of E-patterns requires that the survival rates in the discounted fertilities are

included.

First, Caswell (1989, 2001) predominantly dealt with the construction of matrix models for species with

complex reproductive cycles (e.g. plants with multiple types of offspring). The mean age of the reproducing females20

at the stable age distribution (

† 

A ) and the mean age of the mothers of a cohort (m1) are not well defined for plants

(Caswell 2001, p. 130, footnote 9). It is therefore not surprising that they were not used in the formulation of E-

patterns for age-structured matrix models for animals.

Caswell (2001) was ambiguous with regard to the second problem which can be phrased in terms of

whether the sum of the E-pattern is 1.0 or 1.0 + E1 (i.e. E2 + E3 = 1.0). I have proved in Appendix 2 (eq. A2.8) that25

E2 + E3 = 1.0 for a Leslie matrix and this was first derived by Hamilton (1966, p.18 his eq. 10 when a = 0). Whereas

early chapters in Caswell (2001, e. g. p. 231) say that elasticities in the E-matrix add up to 1.0, which is technically
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correct, the snow goose example used on p. 635 shows that the sum of the E-pattern is 1 + E(m). A discussion in

terms of upper and lower level elasticities is misleading when using a Leslie matrix. The survival rates appear on the

sub-diagonal and thus are upper-level vital rates but they also appear in the discounted fertilities which would make

them lower-level vital rates.

The snow goose example came from Rockwell et al. (1997) and they were the first to state that “adult5

survival actually contributes more to the control of l1 than pooling the elasticities of the elements P2, P3, P4 and P5

indicates”. Mollet and Cailliet (2002, 2003) came to the same conclusion. Note however, that their model used P for

survival (S) of their age classes 1 - 4 and P5 ≡ S5 for the diagonal stasis element of the adult stage. It is debatable if

P2 ≡ S2 should not be counted with juvenile survival because a = 2 yr and P5 = S5 implies that w = • yr which

overestimates l1.10

The same ambiguity appears in Heppell et al. (1996) and Heppell et al. (2000). In their 1996 paper, the E-

patterns were calculated empirically (which guarantees an unbiased E-pattern) from a post-breeding 4-stage model

that included survival to age 1 yr (hatchlings) and survival of the other stages. Therefore the sum was 1.0 + E1 (e.g.

their Fig. 5 for the a = 8 yr scenario for Kemp’s Ridley turtle shows E1 ª 0.1, E2 ª 0.1 + 0.28 + 0.37 ª 0.75, E3 ª

0.25 with sum ª 1.1). The Heppell et al. (2000) pre-breeding model with all adult age-classes in one stage was15

summarized by Caswell (2001, p. 231) and the biased E-pattern sum is 1.0 because survival to age 1 yr was not

included.

An empirical calculation of the E-pattern from a stage-based model is unbiased and therefore an unbiased

value for 

† 

A  can be calculated from the equation E(m) = 1/(

† 

A  + 1). This would prevent the potential problem of

calculating biased elasticities using eq. 9.103 in Caswell (2001) (Mollet and Cailliet 2003). This 

† 

A  will be the same20

as that calculated from the corresponding LHT or Leslie matrix. The stage-based model, although it will yield the

same l1 if fixed stage duration is used to calculate the fractions that graduate in each class, will produce biased 

† 

A 

(Appendix A2.7). In a stage-based model with only the adults in a stage, 

† 

A  is always biased high (Mollet and

Cailliet 2003, Appendix 1(e)(i)) because the adults are speeding through the adult stage (to the next stage = death)

and their mean age at the stable age distribution becomes larger. If juveniles are put in a stage, the same speeding of25

juveniles through the juvenile stage occurs but this will now make the adults younger. In principle, these two biases

for 

† 

A  could offset each other but based on empirical results for a large number of stage-based model, the 

† 

A -bias
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from the juveniles is larger and therefore 

† 

A  for a 3-stage model will produce an 

† 

A  that is lower than that of the

corresponding LHT or Leslie matrix. (It is best to use a starter age class for the offspring so that <w,v> = 

† 

A  and one

stage each for juveniles and adults). In short, we cannot use 

† 

A  from stage-based models to calculate E-patterns from

eqs. A2.7 or A2.9.

4.2 E-patterns for sharks, turtles, mammals, and birds5

The use of elasticities to derive management proposal for elasmobranchs is relatively recent (e. g.

Brewster-Geisz and Miller 2000; Frisk et al. 2001, 2002; Cortés 2002; Mollet and Cailliet 2002, 2003). Brewster-

Geisz and Miller (2000) phrased their E-patterns in terms of fertility, growth, and stasis, terms that are more suitable

for plants (Heppell et al. 2000; Mollet and Cailliet 2003). The validity of a comparative life history study by Frisk et

al. (2001) was questioned by Mollet and Cailliet (2003) and Cortés (2004). Frisk et al. (2002) used a stage-based10

model for barndoor skate Dipterus leaevis and predicted that adult survival had the most effect on population growth

when in fact it is juvenile survival (Mollet and Cailliet 2003; Cortés 2004).

Cortés (2002) reported 

† 

A , E-pattern, and E-ratios for 41 elasmobranch populations. I suggest that the

reported E2/E1 and E3/E1 ratios (E-ratios 2 and 1, respectively in his Appendix 2) could have been calculated directly

from the reported mean a and calculated 

† 

A  and that these ratios are difficult to understand. Cortés (2002) followed15

Heppell et al. (2000), who did not include survival to age 1 yr, and therefore his E2/E1 ratios should be a - 1 (ratio of

eqs. A2.21.2 and A2.21.2) and the sum of the two ratios E2/E1  + E3/E1 should be 

† 

A  - 1. The reported E2/E1 ratios

were on average a - 0.54 yr and the sum was on average 

† 

A  - 0.06 yr ª 

† 

A . It is unlikely that the discrepancies are an

effect of the stochastic calculations that were used; I surmise that they arise because the E-patterns were calculated

within a LHT which requires that Lotka’s equation is made discrete and this should not be attempted (Caswell 2001,20

p. 197).

Smith et al. (1998) suggested that their intrinsic rebound potential (r2M), which was strongly affected by age

at first reproduction (a) but not maximum age (w), has management implications for sharks. Mollet and Cailliet

(2002) showed that their rebound potential could be well represented with a power regression r2M = ln(1.28) a0.809

where 1.28 was interpreted as the effective annual fertility which would be the same for all sharks. Mollet and25

Cailliet (2002) suggested that population growth rates based on available vital rates will provide more meaningful E-

patterns to serve as a basis for elasmobranch management. In this study, I used populations of scalloped
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hammerhead and shortfin mako with a that differed by a factor 3.75 and 2.6, respectively, to show that a has little

effect on the E-pattern. I also showed that the w /a ratio and thus w play an important role in the elasticity ratio

E3/E2. These are  further indications that the intrinsic rebound potential of Smith et al. (1998), which really is a rate

constant and not a productivity or yield as claimed, may be a less useful concept to provide management proposals

for sharks. Heppell et al. (1996; their Fig. 5) were the first to show that different a’s of 8, 12, and 16 yr for Kemp’s5

ridley turtle had little effect on the E-patterns and all three E-patterns were characterized by E3/E2 < 1.0.

E-patterns for marine turtles were used extensively to demonstrate the importance of increasing juvenile

survival with turtle-excluder devices (TEDs) versus increasing survival of hatchlings with head-start programs (e.g.

Heppell et al. 1996; Heppell 1998). Heppell (1998) concluded that most freshwater turtles have similar E-patterns,

whereas desert tortoise and sea turtles had different E-patterns and three different life tables for painted turtle10

produced different E-patterns. The results in Figs. 4B and 5B confirm this. Turtles have relatively large a (4 – 35 yr)

and the E-pattern bias when survival to age 1 yr is excluded becomes small or negligible (Fig. 3). The stage-based

model used by Heppell (1998) that assumed w = • produced large 

† 

A  of 116 and 52 yr (

† 

A / a =  6.11 and 5.21) for

snapping turtle A (a = 19 yr) and Australian snake-necked  turtle (a = 10 yr) because Sa = 0.966 and 0.98,

respectively, were close to 1.0 (Table 4 ID’s #8 & #9). I used the painted turtle to demonstrate that the differences in15

the E-pattern arise because adult survival is different (Fig. 4B). All three turtle populations have the same w /a ratio

and similar a (7 and 8 yr), and Fig. 1B confirms that the calculated E3/E2 ratios from the E-matrix of the Leslie

matrix are as predicted from eq. (A2.13.2) with w /a = 6.

 Tucker (2000) reported that “high eigenelasticity was associated with adult survival” for freshwater

crocodiles. This is surprising considering that their life histories are similar to those of marine turtles. The reported20

adult survival rates of crocodiles (Sa = 0.85 – 0.90) are within the range of those of marine turtles (Sa = 0.74 – 0.95,

Appendix 1) and elasticity of juvenile survival (E2) is expected to be largest. My calculations for Crocodilus

johnstonii (QL), C. johnstonii (NT), C. porosus, C. acutus, and Alligator mississippiensis produced similar E-

patterns (

† 

A /a < 2; 1.59 - 1.88; Table 2, ID #10) to those of marine turtles (

† 

A /a < 2; 1.26-1.61, Table 2 ID # 7) with

the exception of Caiman crocodilus with 

† 

A /a = 2.05 (Table 2, ID #10). This indicates that E2 is largest for the first25

5 species and almost the same as E3 for C. crocodilus. Tucker (2002) used a 5-stage post-breeding census model

with 2 adult-stages without the required F3-matrix element (Caswell 2001, eq. 6.150 on p. 173) or a separate age-
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class for the maturing juveniles; thus his results apply to aeffective = a + 1 yr. However, this would underestimate

rather than overestimate E3. Tucker (2002) based his conclusion on the sum of the elasticity of stasis of the adult

stages [E(P4) + E(P5)], which is indeed largest for all 6 species. However, an E-pattern based on reproduction (F),

growth (G), and stasis (P) is more suitable for plants than animals (Heppell et al. 2000; Mollet and Cailliet 2003).

Stasis (P ) cannot be called survival as was done in his Fig. 2 and the reported largest eigenelasticities are not the5

elasticities of adult survival (E3).

Heppell et al. (2000) modified Grime’s triangle used by Silverton et al. (1992) by replacing the elasticities

of fertility, growth, and stasis, suitable for stage-based models of plants, with the elasticities of fertility, juvenile

survival, and adult survival more suitable for animals. This produced a most promising tool to investigate E-patterns

of mammals because it allowed presentation of the E-pattern of a species as a single data point. They were surprised10

that the elasticity of adult survival (E3) for 50 mammal species was not significantly correlated with generation time

(m1) because the exclusion of survival to age 1 yr produced an artificial hump. Correlation analysis is not a suitable

tool for elasticity analyses because the explicit and exact functional relationship between normalized E3 and 

† 

A  is

known [En,3 = (

† 

A  - a)/(

† 

A  + 1), (eq. A2.8.3)]. The parameter graphs in Fig. 1 are even more general and give the

E3/E2 ratio as a function of x = Sa/l1 and y = a for w/a ratios from 3.0 to 12.0 and can be extended to any w /a ratio.15

Mollet and Cailliet (2003) pointed out that the stage-based model used by Heppell et al. (2000) that used observed w

with P = Sa (1 - ga) for the diagonal matrix element produced biased 

† 

A /a (Table 2, ID’s #14 & #15).

Eberhardt (2002) used a LHT and reported sensitivities (S) rather than elasticities (E) as reported here. He

concluded that for all 16 mammals and the spotted owl the sensitivity of adult survival S3 = d(l)/d(Sa) was largest by

far with S3/S(la)-ratios between 12.3 - 1.36. The sensitivity of ‘early survival’ in his Table 2 is S(la) = d(l1)/d(la)20

rather than S2 = S(Sj) = d(l1)/d(Sj) and the latter would provide a better comparison with S3. They are related by the

equation S(la) = S2/(a Sj
(a-1)). His Fig. 3 suggests that S3 is largest for all species but my calculation of S2 indicated

that it is larger for 6 out of the 17 mammal species. For 4 out of these 6 species (Grizzly bear B.C., Lysan monk seal,

fur seal, and killer whale) 

† 

A /a is < 2.0 and therefore these species also have E3/E2 < 1.0 (Table 2, ID #16).

Both Russell (1999) and Saether and Bakke (2000) concluded that population growth rates of birds are25

most sensitive to adult survival. My results support this conclusion in general but suggest that juvenile survival is

more important for almost 20% of their bird species, in particular those with a = 1 yr and large (Sa - l1) (Fig. 4D,
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Table 2, IDs #20-23). Four marine birds and 11 terrestrial birds (including borderline white stork) have 

† 

A /a < 2 .

They did not include survival to age 1 yr, which overestimates the importance of adult survival (E3). In addition,

they used a matrix model that assumes w = • yr which further overestimates E3 because 

† 

A  is overestimated, in

particular for long-lived species with Sa close to 1.0. Russell (1999, his Fig. 2) gives a characteristic equation of

order a + 1 which is different from the one given in Saether and Bakke (2000, their eq. 2). If the maturing juveniles5

have the same survival rate as adults, then they can be combined with the adult stage in the post-breeding census that

was used, but then there are a - 2 not a - 1 time-steps between ‘immature’ and ‘breeding adult’ stages. Therefore,

the results in Russell (1999) apply to aeffective = a + 1 and his reported l1’s are underestimates.

Better longevity estimates for birds are needed to avoid the use of the w = • yr approximation. Although

some albatross species are long-lived, my longevity estimates of w = 6a yr are probably sufficient. Adelie penguin10

with a = 4 yr has w = 14 yr (w /a = 3.5) and yellow-eyed penguin with a = 3 yr has w < 14 yr (w /a £ 4.7) (H.

Nevins, MLML, Moss Landing, CA 95039, USA, personal communication). Nevins and Carter (2003) reported  a =

3-5 yr and w > 10 yr (w /a > 2 – 3.3) for the common murre. Eberhardt (2000) used  a = 2 yr and w = 25 yr (w /a =

12.5) for the spotted owl. For the lesser snow goose my longevity estimate of w = 6a = 12 yr could be too low,

whereas the w = • yr estimate used by Rockwell et al. (1997) is an overestimate. The observed population growth of15

mid-continent lesser snow geese from 1970 to 1995 was about l1 = 1.031 (estimate from the linear regression used

by Rockwell et. al. 1997 in his Fig. 1, taking into account footnote 21 on p. 634 in Caswell 2001). This value can be

compared with calculated l1 = 1.013, 1.021, 1.045, 1.051, 1.052, 1.052 using w = 10, 12, 18, 30, 40, and • yr,

respectively, which suggests that a longevity between 12 and 18 yr would be best.

4.3 Limitations of deterministic E-patterns based on deterministic 

† 

A  formula that assumes age-independent Sa and20

m

The E-patterns presented in this study are deterministic and apply to the populations at their stable age

distribution. Several case studies concluded that deterministic elasticities are good indicators of stochastic

elasticities whereas the stochastic population growth rate is not well predicted by a deterministic analysis of the

mean matrix (Nakaoka 1996; Dixon et al. 1997). E-patterns have been shown to be very robust to even large (± 50%25

at least) perturbations of vital rates (Caswell 2001, p. 243). However, the risk of extinction for small populations



23

increases if stochasticity of vital rates is included (Dixon et al. 1997; Caswell 2001, p. 493). The deterministic

results presented here for sharks (mean 

† 

A /a = 1.30, CV = 8.3%, range 1.06-1.60; n = 41 + 7; Table 2, ID #2)

compare well with the stochastic calculation carried out by Cortés (2002) (mean 

† 

A /a = 1.46, CV = 14%, range

1.11-2.00; n = 41; Table 2, ID #4). The pseudo-stochastic E-patterns that assume l1 = 1 for these shark populations

provide an ever better approximation (mean 

† 

A /a = 1.37, CV = 16%, range 1.05-2.09; n = 41 + 7; Table 2, ID #3) to5

the stochastic calculation by Cortés (2002). I therefore propose that the pseudo-stochastic E-patterns are good

approximations of stochastic calculations for all species in this study of relatively long-lived animals.

The use of age-independent vital rates, in particular Sa and m, appears to be a more serious limitation but I

will demonstrate that the E-patterns presented here are fairly robust except in extreme cases of size-dependent

fertility not found in the animals considered here. Cortés (2002) used a stochastic selection of the survival rates in10

elasmobranchs and gave most weight to the mass dependent survival rates reported by Peterson and Worblewski

(1984) and used wet weight as a proxy for dry weight because it produced more realistic survival rates. While this

procedure can be questioned, his results are most suitable for comparison with my pseudo-stochastic calculations

because his adult survival rates increase with age whereas mine are age-independent. If older adults have larger

survival rates, 

† 

A  and 

† 

A /a are expected to be larger and my calculation might not provide a reasonable15

approximation for the E-pattern of elasmobranchs. This is not the case based on the results discussed in the previous

paragraph.

The data for leopard shark, North Sea haddock, and striped bass with age-dependent fertility presented in

Heppell et al. (1999, their Fig. 1) provide excellent cases to explore the effect of age-dependent m on the E-pattern.

The most striking result is for striped bass with surprisingly large E3/E2 (ª 0.55/0.34 ª 1.6 from their Fig. 1),20

whereas North Sea haddock and leopard shark had, as expected, E3/E2 ratios smaller than 1.0 (ª 0.15 and ª 0.26,

respectively). The reported E-pattern for striped bass is in apparent conflict with equation A2.4 which predicts that

E3/E2 (= 

† 

A /a – 1) should be considerably smaller than 1.0 because l1 – Sa = 0.4 is large. While the reported E-

patterns in Heppell et al. (1999) are biased because survival to age 1 yr was not included, the unbiased E-pattern for

striped bass with E3/E2 ~ 0.92 is still much closer to 1.0 than expected, given that l1 – Sa = 0.4 is very large (Table25

3).
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In the derivation of eq. (A2.4) for 

† 

A , fertility (m) was assumed to be age-independent and Table 3

illustrates that this approximation is adequate as long as the observed increases in the age-dependent fertilities are

small to moderate. This applies to leopard shark and North Sea haddock for which m increases by a factor of 3.6 and

4.3, respectively (Table 3). The age-independent approximation produces 

† 

A -biases of only –5% and -8%,

respectively. When the increase in the age-dependent fertility is large (61, as for striped bass) to extreme (276, as for5

hypothetical striped bass), the approximation using age-independent fertility is no longer adequate and 

† 

A  has to be

calculated more accurately as was done in Table 3 for all three species. For striped bass the age-independent

approximation produced 

† 

A -bias of –29% compared to the calculation with the experimentally observed fertilities. 

Berkeley et al. (2004) reported that older rockfish and cod or striped bass produce larvae/infertile eggs with

higher survival rates. This would require different larval age-classes and would be difficult to incorporate in an age-10

structured LHT or Leslie matrix. However, such an effect could be simulated with the proposed hypothetical striped

bass Leslie matrix model by increasing observed fertility of older fish to reflect that their larvae/eggs will have

larger survival to age 1.

Caswell (2001, p. 39) suggested that size-dependent demography is probably the rule rather than the

exception and his examples included reproductive output that is strongly dependent on adult body size (e.g. turtles15

according to Gibbons et al. 1982). I suggest that an age-classified Leslie matrix is adequate for turtle populations. In

addition, the reported reproductive output for the five turtle species in Gibbons et al. (1982) varies by less than a

factor of 5 and even an age-classified model using age-independent m should provide a good approximation for the

true E-patterns.

It is often stated that sharks are long-lived and have few offspring (Musick et al. 2000), whereas bony fish20

more commonly spawn millions of egg and are shorter-lived (Winemiller and Rose 1992). The implication usually is

that the E-patterns and thus management are expected to be different. This is not correct unless the number of eggs

produced depends strongly on maternal mass as outlined above. If spawning is mass-independent and recruitment

does not fluctuate (time-independent), the E-pattern of a spawner is identical to that of a shark producing the same

number of maturing juveniles ready to “spawn” for the first time. This is best understood from the discounted25

fertilities in the pre-breeding Leslie matrix, which are Fi = miS1. A large mi with corresponding small S1 produces the

same Fi as small mi with large S1. Recruitment of a spawning fish is expected to show large fluctuation but on
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average population growth is expected to be around 1.0 and therefore the pseudo-stochastic E-pattern using m1

instead of 

† 

A  should apply in a first approximation.

4.4 Fast-slow continuum and r-K selection

The fast-slow continuum introduced by Read and Harvey (1989) has been used by many to explain the

results of prospective elasticity analysis (e. g. Heppell et al. 2000; Saether and Bakke 2000; Cortés 2002). I suggest5

that the fast-slow continuum is not a useful concept to understand E-patterns of animals in the context of a

prospective analysis with the goal of providing management proposals. The “fast” end corresponds to species that

start and end reproduction early (small a and w), have large fertility (m) and low survival rates (Sj and Sa), while the

“slow” end corresponds to species with opposite vital parameters. Consider the 44 mammal and bird populations

with a = 1 yr in Figs. 4C & D: they would all be expected to be at the fast end because a (the most important of all10

the parameters) is small. However, these species have a considerable 

† 

A /a range of 1.2 - 7.8 (≡ 

† 

A  because a = 1;

E3/E2 range = 0.20 – 6.8), indicative of a wide range of E-patterns from E(Sa) much smaller than E(Sj) to the

opposite. The 66 elasmobranch populations have a between 1-35 (most are between 2-20) and they would be

expected to exhibit vastly different E-patterns along a slow-fast continuum because the range of a is large. This is

not the case. Their E-patterns are similar and E(Sj) is largest for all because 

† 

A /a < 2 (Fig. 4A).15

Similarly, r-K selection appears not to be a useful concept either for understanding E-patterns. All 240

populations of birds, mammals, turtles, and mammals studied should be considered K-strategists (l1 = 0.47 - 1.8).

The E-matrix and derived E-pattern applies to the stable age-distribution which is often not reached in r-selected

species with large r1 = ln(l1) over the short period of time in a typical growing season (Caswell 2001, p. 99). The E-

pattern is determined by 

† 

A  and a alone and the 

† 

A  formula (A2.4) shows how 

† 

A  depends on vital rates. Nothing20

else is needed to calculate the E-pattern. I suggest that the formulas presented in this paper are adequate to

understand how life histories determine elasticity patterns and that there is no need to calculate second derivatives of

eigenvalues, i.e. sensitivities of elasticities as suggested by Caswell (2001, p. 257). If A2.4 is inadequate, 

† 

A  can be

calculated more accurately from the LHT or Leslie matrix using age-dependent vital rates to provide more accurate

E-patterns. Many studies trying to provide management proposals based on prospective analyses are actually25

studying life history variation in an evolutionary perspective (Caswell 2001).
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4.5. Effect of the reproductive cycle on the E-pattern

The 

† 

A /a ratio (= E(Sa)/E(Sj) + 1 = E3/E2 + 1) perfectly defines the relative importance of adult and juvenile

survival and 

† 

A /a = 2 is equivalent to E(Sa) = E(Sj). The relative importance of E(Sj) and E(m) with ratio E(Sj)/E(m)

= a needs to be addressed also. When a = 1.0 yr, we have E(Sj) = E(m). For animals with large a, E(Sj) becomes

large compared to E(m) and this fact was used in support of management measures that increased juvenile survival5

because it was far more effective than increasing fertility (e.g. TEDs versus head-start programs for sea turtles

(Crouse et al. 1987). However, while E(Sj) is certainly much larger than E(m) when a is large, say 15 – 35 yr, the

ratio E(Sj)/E(m) would be 3 - 7 instead of 15 - 35, if a projection interval (PI) = 5 yr combined with actual fertility is

used instead of PI = 1 yr combined with annualized fertility. Mollet and Cailliet (2003) suggested that this applies to

the killer whale and an Australian green turtle population. Many species used in this study have a reproductive cycle10

≥ 2 yr (e.g. king penguin, several albatrosses, chimpanzee, gorilla, African elephant, hippopotamus, manatee, and

several whales). The 66 elasmobranch populations comprised 32 with RC = 1 yr, 29 with RC = 2 yr, and 5 with RC

= 2.5(2 or 3) to 3 yr. In all these cases the observed RC combined with actual fertility should be used which will

increase the importance of fertility because E(m) becomes larger. In this study I used RC = 1 yr with effective annual

fertility for easier comparison with reported results. The E-triangle is suitable for comparison of E-pattern based15

upon different PI’s. However, it makes identification of a particular species in the E-triangle more difficult because

the a contours now have units of the PI which will be different for different species, rather than 1 yr for all.

4.6 Conclusions

For animals with a simple rather than a complex life history, Mollet and Cailliet (2003) had reservations

about the use of stage-based models with few stages because they require great care when calculating the E-pattern.20

I now suggest the same for the Leslie matrix model. A life history table with an empirical calculation of the E-

pattern provides all the information needed for an elasticity analysis, whereas the corresponding Leslie matrix

requires attention to the concept of discounted fertilities to obtain the unbiased E-pattern which should be the same

for post- and pre-breeding censuses. If a Leslie matrix is used, then results should at least should be compared with

those from a life history table. If age-specific fertilities and or survival rates are available, then it would be better to25

use them rather than average values (Barlow and Boveng 1991) and obtain the best possible 

† 

A  and E-pattern.

Matrix models are required for the construction, analysis, and interpretation of species with complex life cycles and
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for more advanced topics in population model analyses which are superbly presented in Caswell (2001). Discrete-

time, discrete-state matrix models are easier to understand than partial differential equation models (McKendrick-

von Foerster equation with boundary condition), delay-differential equation models, or integrodifference equation

models (Caswell 2001, p. 205).

The E-matrix is a mathematical rather than a biological concept and provides the proportional first5

derivatives [E(aij) = dln(l)/dln(aij)] of the function l = l (aij), where aij are vital rates or derived from vital rates.

The E-pattern then provides a summary of the E-matrix and like the E-matrix applies to the stable age distribution. I

have shown that the E-matrix is not even needed because the E-pattern can be directly calculated from a and 

† 

A . It is

tempting to suggest that a prospective elasticity analysis might be less useful than previously suggested because E-

patterns are so easily estimated. Caswell (2001, p. 109, footnote 7) says: “Solubility is useful to a chemist because it10

reveals something about the arrangement of electrons in the substance and the solvent, even if the substance never

encounters the solvent. Population growth rate is useful to a demographer because it reveals something about the life

cycle and the environment, even if the population never encounters constant conditions as t Æ •.” I suggest that the

same applies to the E-pattern which describes what would happen (projection) rather than what will happen

(forecasting) given certain hypotheses (Caswell 2001, p. 30).15
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Table Legends

Table 1. Vital rates used in hypothetical demonstration species

a = age at first reproduction; w = age at last reproduction; S1 = survival to age 1 yr;  Sj = juvenile survival; Sa = adult

survival; m = female fertility.

Table 2. Summary statistics for 

† 

A /a, w /a, and l1 for shark, turtle, mammal, and bird populations5

† 

A  = mean age of reproducing females at the stable age distribution; a = age at first reproduction (yr); w = age at last

reproduction (yr); l1 = population growth; CV = coefficient of variation.

Table 3. Biased 

† 

A  (and  E-patterns) for selected  species with age-dependent fertility when assuming constant

fertility

After Heppell et al. (1999, their Table 2) except hypothetical striped bass. a = age at first reproduction (yr); w = age10

at last reproduction (yr); Sa = adult survival; m = female fertility; l1 = population growth; 

† 

A  = mean age of

reproducing females at the stable age distribution.

Figure Legends

Fig. 1. Relative proportional importance of adult and juvenile survival on population growth of animals assuming

constant fertility m and adult survival Sa. Graphs give (E3/E2)-ratio contours for w/a [= w/al] = 3.0 (A), 6.0 (B), 9.015

(C), and 12.0 (D) for x = Sa/l1 [= Sa/lambda1] and y = a [= alpha]. E.g. for w /a = 6.0 from eq.  (A2.13.2) E3/E2 =

(1/y) {[x/(1 - x)] – [(5y + 1)x(5y + 1) /(1-x(5y + 1))]}. The E3/E2 = 1 contour gives parameter values of w/a, Sa/l1, and a

for which elasticity of adult survival is the same as elasticity of juvenile survival. (Not all the critical, vertical

contours are drawn because of lack of program control.) (Note to editor and reviewers: I am hoping to produce

smoother contours, which requires improved ‘contours.m’ script which in turn requires a newer version of Octave20

program.)

Fig. 2. Life history table (A) and corresponding birth pulse Leslie matrices using post-breeding (B) and pre-breeding

(C)) censuses with z-transformed life cycle graphs (D), eigenvalues and eigenvectors (E), elasticity matrices (F&G)

and E-patterns (H). The E-matrix for both post- and pre-breeding censuses were used to calculate the E-pattern in 7

different ways in 5 columns:25

1) Summing over matrix elements of the E-matrix including the contribution of survival in the discounted fertilities;
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2) From eqs. (A2.7) or an empirical calculation using E(x) = [l(1.001x)-l(0.999x)]/[0.002l1(x)] (Crowder et al.

1994, their Appendix 2);

3) Calculation of normalized elasticities from the results in 1) or 2) (or using eqs. A2.9);

4) Summing over matrix elements excluding contribution of survival in the discounted fertilities producing biased E-

pattern;5

5) E-pattern using equations for post- and pre-breeding censuses that exclude survival in the discounted fertilities

(equations A2.20 and A2.21, respectively) producing biased E-pattern;

4/3) Calculation of the ratio in columns 4 and 3 as an estimate of the bias when survival in the discounted fertilities

is excluded in the calculation of the E-pattern.

Fig. 3. Triangle E-patterns as a function of a for post- and pre-breeding censuses with and without inclusion of10

survival in the discounted fertilities. Graph shows four E-patterns for each hypothetical species used (a = 1 yr

species from Fig. 1 and three additional hypothetical species with a = 2, 5, and 15 yr). Unbiased E-patterns fall on

the corresponding a contour and post- and pre-breeding E-patterns coincide. Biased E-pattern for pre-breeding

census (when survival in the discounted fertilities is excluded) fall on the a - 1 contour. Biased E-pattern for post-

breeding census (when survival in the discounted fertilities is excluded) fall between the a and a-1 contours. As a15

increases the bias decreases and the two biased E-pattern approach the unbiased E-pattern.

Fig. 4. Triangle elasticity patterns based on 

† 

A . Contours drawn are for 

† 

A /a (= A/al) = 2.0 and a (= al) = 1, 2, 5,

and 15 yr. Duplicate star symbols were used for demonstration species: scalloped hammerhead (Hammerhead) with

a = 4 and 15 yr (Cortés 2002) and shortfin mako (Sfin mako) with a = 7 (Pratt and Casey, 1983) and 18 yr

(Natanson et al. in review) (A); painted turtle with 3 sets of different vital rates for 2 populations from Wilbur20

(1995), Tinkle et al. (1981), and Mitchell (1988) (B); killer whale with 3 sets of different vital rates from Heppell et

al. (2000), Eberhardt (2002) and Caswell (2001) (C); golden plover a = 1 yr, w = 6 & 100 yr, emperor penguin a =

5 yr, w = 30 & 100 yr (D).

Fig. 5. Triangle elasticity patterns based on m1 (l1 = 1.0, R0 = 1 approximation). Contours drawn are for m1/a (=

Mu1/al) = 2.0 and a = 1, 2, 5, and 15 yr. For explanation of symbols see Fig. 4. This is termed a pseudo-stochastic25

calculation, see text for details.
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Appendix Legends

Appendix 1. Vital rates and their sources, and demographic results for shark, turtle, mammal, and bird

populations.5

a = age at first reproduction (yr); w = age at last reproduction (yr); S1= first year survival; Sj= juvenile survival; Sa=

adult survival; m = female fertility; l1 = population growth; R0 = net reproductive rate;

† 

A  = mean age of reproducing

females at the stable age distribution; m1 = mean age of reproducing females in a cohort; ID = ID used in reference.

Appendix 2. Calculation of 

† 

A  and E-patterns for age-structured populations

10

15

20

Table 1. Vital rates used in hypothetical demonstration
species
a = age at first reproduction; w = age at last reproduction;
S1 = survival to age 1 yr;  Sj = juvenile survival;25
Sa = adult survival; m = female fertility.

a w S1 Sj Sa m Comments
1 5 0.50 = S1 0.60 2.0 Figs. 1 and 2
2 10 0.70 0.70 0.95 2.0 Fig. 2
5 25 0.87 0.87 0.95 2.0 Fig. 2

15 75 0.90 0.95 0.95 2.0 Fig. 2



Table 2. Summary statistics for 

† 

A /a, w /a, and l1 for shark, turtle, mammal, and bird populations

† 

A  = mean age of reproducing females at the stable age distribution; a = age at first reproduction (yr); w = age at last reproduction (yr);
l1 = population growth; CV = coefficient of variation.
ID Reference n Mean 

† 

A /a
(CV); Range

Mean w /a
(CV); Range

l1-
range

Comments

Sharks and rays (Subclass Elasmobranchii)
1 This study Fig. 4A 66 1.31 (9.9%);

1.056 - 1.75
2.68 (45%)
1.13 – 7.0A

0.559-
1.79

All sharks and rays in data base; Fig. 5A gives
E-patterns for l1= 1.0

2 This study using sharks in
Cortés (2002)

48B 1.30 (8.3%);
1.056 - 1.56

2.26 (57%)
1.13 – 7.0A

0.559-
1.79

Calculation using constant vital rates for
comparison with Cortés (2002, his App. 2)

3 This study using sharks in
Cortés (2002)

48B 1.37 (16%);
1.055 - 2.09

2.26 (57%)
1.13 – 7.0A

1.0 for
all

Pseudo-stochastic calculation using constant
vital-rates for comparison with Cortés (2002,
his Appendix 2)

4 Cortés (2002), results in his
Appendix 2

41 1.46 (14%);
1.11 - 2.00

2.35 (40%)
1.13 – 5.20

0.847-
1.66

Statistics from stochastic calculation in Cortés
(2002, his App. 2;)

Turtles (and crocodiles) (Class Reptilia)
5 This study Fig. 4B 27 1.91 (32%);

1.26 - 3.39
6.0 for 20
out of 27

0.870-
1.04

All turtles in data base; Fig. 5B gives E-
patterns for l1= 1.0

6 This study Fig. 4B 7 1.36 (11%);
1.257 - 1.61

4.46 (45%)
1.69 – 6.0

0.952-
1.01

All marine turtles in data base; Fig. 5B gives
E-patterns for l1= 1.0

7 This study Fig. 4B 20 2.10 (28%);
1.261 - 3.39

6.0 for all 0.870-
1.04

All terrestrial turtles in data base; Fig. 5B
gives E-patterns for l1= 1.0

8 This study using terrestrial
turtles in Heppell (1998)

20 2.10 (29%):
1.26 - 3.39

6.0 for all 0.870-
1.04

w  =  6a yr approximation

9 This study using terrestrial
turtles in Heppell (1998)

20 2.45 (52%);
1.26 - 6.11

• for all 0.874-
1.04

Stage-based model with w = •: mean 

† 

A /a
affected by 2 turtles with extremely large 

† 

A 
10 This study using data for

crocodiles in Tucker (2000)
6 1.77 (10%);

1.59 - 2.05
4.09 (30%)
1.23 – 6.25

0.953-
1.15

Added for discussion purposes; expected E(Sj)
to be largest i.e. 

† 

A /a < 2.0
Mammals (Class Mammalia)

11 This study Fig. 4C 68 2.39 (29%)
1.21 - 4.96

6.49 (46%)
2.40 – 19.0

0.835-
1.57

All mammals in data base; Fig. 5C gives E-
patterns for l1= 1.0

12 This study Fig. 4C 17 2.53 (23%);
1.68 - 3.77

6.48 (49%)
2.57 – 12.5

0.941-
1.06

All marine mammals in data base; Fig. 5C
gives E-patterns for l1= 1.0

13 This study Fig. 4C 51 2.34 (32%);
1.21 - 4.96

6.50 (45%)
2.40 – 19.0

0.835-
1.57

All terrestrial mammals in data base; Fig. 5C
gives E-patterns for l1= 1.0

14 This study with mammals in
Heppell et al. (2000)

50 2.45 (32%)
1.21 - 4.96

6.98 (44%)
2.40 – 19.0

0.835-
1.57

Leslie matrix with given w was used;
l1’s are the same as in Heppell et al. (2000)

15 This study with mammals
and model in H et al. (2000)

50 2.73 (39%);
1.21 - 6.16

6.98 (44%)
2.40 – 19.0

0.835-
1.57

Stage was used for adults with P = Sa (1 - ga):
l1’s are the same but 

† 

A /a biased high
16 This study using mammals in

Eberhardt (2002)
17 2.27 (17%);

1.76 - 3.25
5.30 (46%)
3.33 – 12.5

0.978-
1.20

I used E not S; 4 species have E(Sj) largest
corresponding to 

† 

A /a < 2.0
Birds (Class Aves)

17 This study Fig. 4D 77C 2.4765 (32%);
1.55 - 7.80

6.0 for allC 0.471-
1.34

All birds in data base; Fig. 5D gives E-
patterns for l1= 1.0

18 This study Fig. 4D 46C 2.44 (14%);
1.71 – 3.16

6.0 for allC 0.928-
1.14

All sea (marine) birds in data base: Fig. 5D
gives E-patterns for l1= 1.0

19 This study Fig. 4D 31C 2.4756 (46%);
1.55 - 7.80

6.0 for allC

but one
0.471-
1.34

All terrestrial birds in data base; Fig. 5D gives
E-patterns for l1= 1.0

20 This study using birds in
Saether and Bakke (2002)

49 2.38 (23%);
1.55 - 4.02

6.0 for all 0.471-
1.34

Smaller longevity (w = 6a yr approximation)

21 This study using birds in
Saether and Bakke (2002)

49 3.11 (63%);
1.56 - 13.0

• for all 0.567-
1.34

Stage-based model, Pad  = Sa (i.e. w = ∞ yr)

22 This study using birds in
Russell (1999)D

26 2.43 (14%);
1.71 - 3.16

6.0 for all 0.949-
1.14

Smaller longevity (w = 6a yr)

23 This study using birds in
Russell (1999)D

26 2.81 (25%);
1.72 - 4.83

• for all 0.950-
1.14

Stage-based model, P = Sa (i.e. w  = ∞ yr)

AFor Australian sharpnose for which I used a = 1.0 yr for one ‘population’. Using mean a = 1.45 yr would give lower w/a = 4.83.
B41 + 7, seven sharks with mean a ª 1.45 to 3.5 were simulated with two integer a values.
CExcluding golden plover and emperor penguin populations for which w  = 100 yr was used for demonstration purposes.
DUsing reported a. (Note that Russell (1999) used characteristic equation that yields solution for aeffective = a + 1).



Table 3. Biased 

† 

A  (and  E-patterns) for selected  species with age-dependent fertility when assuming age-
independent fertility
After Heppell et al. (1999, their Table 2) except hypothetical striped bass. a = age at first reproduction (yr); w = age at last
reproduction (yr); Sa = adult survival; m = female fertility; l1 = population growth; 

† 

A  = mean age of reproducing females
at the stable age distribution.

Species a w Sa m m-Ratio
(max/min)

l1 Sa/l1

(l1-Sa)

† 

A 

† 

A -bias

† 

A /a

Leopard shark
Triakis semifasciata

17A 30 0.87 3.13-11.2
observed

3.6 1.07 0.81
(0.20)

21.6 1.27

“ 17 30 0.87 7.53B 1C 1.07 “ 19.5 -4.9% 1.15

North Sea haddock
Melanogr. aegelfinus

3 6 0.3 (4.7 104 -
2.0 105) obs.

4.3 1.14 0.26
(0.84)

3.64 1.21

“ 3 6 0.3 (5.25 104)B 1C 1.14 “ 3.34 -8.4% 1.11

Hypothetical
striped bassD

4 15 0.6 (5.7 104 -
1.6 107)D

276 1.00 0.60
(0.40)

9.50D 2.37

Striped bass
Morone saxatilis

4 15 0.6 (3.3 104 –
2.4 106) obs.

61 1.00 0.60
(0.40)

7.69 1.92

“ 4 15 0.6 (2.72 105)B 1C 1.00 “ 5.47 -29% 1.37
AHeppell et al. (1999) used larger a = 17 yr for leopard shark compared to the values that were used in this study which
followed Cailliet (1992) and Cortés (2002) but this is not material here.
BConstant female fertility m was calculated such that l1 remained the same.
CAssuming age-independent female fertility (m).
DFemale fertility m increases as fast as lx decreases, therefore the discrete net reproductive rate function is constant and 

† 

A 
approaches the critical value of (a + w)/2 = (4 + 15)/2 = 9.50. Note that the same critical value is obtained for age-
independent m and Sa/l Æ 1 (eq. A2.5.1).
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 B)  w/al = 6.0 
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 C)  w/al = 9.0 
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Fig. 1. Relative proportional importance of adult and juvenile survival on population growth of animals

assuming constant fertility m and adult survival Sa. Graphs give (E3/E2)-ratio contours for w/a [= w/al] =

3.0 (A), 6.0 (B), 9.0 (C), and 12.0 (D) for x = Sa/l1 [= Sa/lambda1] and y = a [= alpha]. E.g. for w /a = 6.0

from eq.  (A2.13.2) E3/E2 = (1/y) {[x/(1 - x)] – [(5y + 1)x(5y + 1) /(1-x(5y + 1))]}. The E3/E2 = 1 contour gives

parameter values of w/a, Sa/l1, and a for which elasticity of adult survival is the same as elasticity of

juvenile survival. (Not all the critical, vertical contours are drawn because of lack of program control.)

(Note to editor and reviewers: I am hoping to produce smoother contours, which requires improved

‘contours.m’ script which in turn requires a newer version of Octave program.)



A) Life table for hypothetical species with alpha  = 1 yr, w  = 5 yr, Sjuv = 0.5, Sadu = 0.6,
x Sx lx mx lx mx EulerSum Abar Mu1 and m  = 2.0.
0  1.0000 0 0 0 0 0
1 0.5 0.5000 2.0 1.0000 0.6280 0.628 1.000 l1 = 1.5924
2 0.6 0.3000 2.0 0.6000 0.2366 0.473 1.200 Used Solver to set Euler Sum to 1.0 
3 0.6 0.1800 2.0 0.3600 0.0892 0.267 1.080 with l1 as parameter
4 0.6 0.1080 2.0 0.2160 0.0336 0.134 0.864 T = 1.7955 = ln(Ro)/ln(la1)
5 0.6 0.0648 2.0 0.1296 0.0127 0.063 0.648

   Ro= 2.3056 1.0000 1.566 2.078   
B) Projection matrix A for birth-pulse C) Projection matrix A for birth-pulse 
post-breeding census pre-breeding census 

1 F1=1.0 F2=1.2 F3=1.2 F4=1.2 F5=1.2 F1=1.0 F2=1.0 F3=1.0 F4=1.0 F5=1.0
2 S1=0.5 0 0 0 0 S2=0.6 0 0 0 0
3 0 S2=0.6 0 0 0 0 S3=0.6 0 0 0
4 0 0 S3=0.6 0 0 0 0 S4=0.6 0 0
5 0 0 0 S4=0.6 0 0 0 0 S5=0.6 0

S5=0.6 (not part of Leslie matrix, required for calculation of F5)  
 D) z-transformed life cycle graphs for post- and pre-breeding census  (la=lambda1)

F1/la=mS1/la  F1/la=mS1/la  
F5/la =mS5/la F5/la=mS1/la

S1/la S2/la S3/la S4/la S2/la S3/la S4/la S5/la
E) Eigenvalues and eigenvectors of the stable age distribution for post- and pre-breeding census
Eigenvalues Eigenvectors (R&L) for lambda1  Eigenvalues Eigenvectors (R&L) for lambda1

Real Imag w v w(w1=1) v(v1=1) Real Imag w v w(w1=1) v(v1=1)
l1 1.5924 0 66.9% 19.5% 1.0000 1.0000 1.5924 0 62.8% 22.6% 1.0000 1.0000
l2 0.133 0.533 21.0% 23.1% 0.3140 1.1848 0.133 0.533 23.7% 22.3% 0.3768 0.9873
l3 0.133 -0.533 7.9% 22.4% 0.1183 1.1445 0.133 -0.533 8.9% 21.5% 0.1420 0.9538
l4 -0.429 0.293 3.0% 20.3% 0.0446 1.0375 -0.429 0.293 3.4% 19.5% 0.0535 0.8646
l5 -0.429 -0.293 1.1% 14.7% 0.0168 0.7536 -0.429 -0.293 1.3% 14.2% 0.0202 0.6280

r 0.4652 r 0.4652
Ro 2.3056 Abar=<w,v> 1.5663 Ro 2.3056 Abar=<w,v> 1.5663
T 1.7955 Abar (eq. A2.19) 1.5663 T 1.7955 Abar (eq. A2.19) 1.5663
Mu1 2.0784 Abar (eq. A2.4) 1.5663 Mu1 2.0784 Abar (eq. A2.4) 1.5663
F) E-matrix for post-breeding census Sums G) E-matrix for pre-breeding census Sums
0.4009 0.1511 0.0569 0.0214 0.0081 0.638 0.4009 0.1511 0.0569 0.0214 0.0081 0.638
0.2375     0.2375 0.2375     0.2375

 0.0864    0.0864  0.0864    0.0864
  0.0295   0.0295   0.0295   0.0295
   0.0081  0.0081 1.000    0.0081  0.0081
H) E-pattern for post-and pre-breeding census (see caption for details)

 Col 1 Col 2 Col 3 Col 4 Col 5 Cols 4/3 Col 1 Col 2 Col 3 Col 4 Col 5 Cols 4/3
E1 0.638 0.638 0.390 0.638 0.638 1.638 + bias 0.638 0.6384 0.390 0.638 0.638 1.638,+
E2 0.638 0.638 0.390 0.238 0.238 0.610 - bias 0.638 0.6384 0.390 0 0 0,--
E3 0.362 0.362 0.221 0.124 0.124 0.562 - bias 0.362 0.3616 0.221 0.362 0.362 1.638,+

Sums 1.6384 1.6384 1.000 1.000 1.000 1.6384 1.6384 1.000 1.000 1.000
 1.5663  Abar =  E2/E1 +E3/E1, as check 1.5663  Abar =  E2/E1 +E3/E1, as check
 1.5663 Abar/alpha = 1 + E3/E2 (= Abar if alpha =1), check 1.5663 Abar/alpha = 1 + E3/E2 (= Abar if alpha =1) 

1 2 3 4 5 1 2 3 4 5



Fig. 2. Life history table (A) and corresponding birth pulse Leslie matrices using post-breeding (B) and

pre-breeding (C)) censuses with z-transformed life cycle graphs (D), eigenvalues and eigenvectors (E),

elasticity matrices (F&G) and E-patterns (H). The E-matrix for both post- and pre-breeding censuses were

used to calculate the E-pattern in 7 different ways in 5 columns:

1) Summing over matrix elements of the E-matrix including the contribution of survival in the discounted

fertilities;

2) From eqs. (A2.7) or an empirical calculation using E(x) = [l(1.001x)-l(0.999x)]/[0.002l1(x)] (Crowder

et al. 1994, their Appendix 2);

3) Calculation of normalized elasticities from the results in 1) or 2) (or using eqs. A2.9);

4) Summing over matrix elements excluding contribution of survival in the discounted fertilities producing

biased E-pattern;

5) E-pattern using equations for post- and pre-breeding censuses that exclude survival in the discounted

fertilities (equations A2.20 and A2.21, respectively) producing biased E-pattern;

4/3) Calculation of the ratio in columns 4 and 3 as an estimate of the bias when survival in the discounted

fertilities is excluded in the calculation of the E-pattern.
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Fig. 3. Triangle E-patterns as a function of a for post- and pre-breeding censuses with and without

inclusion of survival in the discounted fertilities. Graph shows four E-patterns for each hypothetical species

used (a = 1 yr species from Fig. 1 and three additional hypothetical species with a = 2, 5, and 15 yr).

Unbiased E-patterns fall on the corresponding a contour and post- and pre-breeding E-patterns coincide.

Biased E-pattern for pre-breeding census (when survival in the discounted fertilities is excluded) fall on the

a - 1 contour. Biased E-pattern for post-breeding census (when survival in the discounted fertilities is

excluded) fall between the a and a-1 contours. As a increases the bias decreases and the two biased E-

pattern approach the unbiased E-pattern.
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Fig. 4. Triangle elasticity patterns based on 

† 

A . Contours drawn are for 

† 

A /a (= A/al) = 2.0 and a (= al) = 1,

2, 5, and 15 yr. Duplicate star symbols were used for demonstration species: scalloped hammerhead

(Hammerhead) with a = 4 and 15 yr (Cortés 2002) and shortfin mako (Sfin mako) with a = 7 (Pratt and

Casey, 1983) and 18 yr (Natanson et al. in review) (A); painted turtle with 3 sets of different vital rates for

2 populations from Wilbur (1995), Tinkle et al. (1981), and Mitchell (1988) (B); killer whale with 3 sets of

different vital rates from Heppell et al. (2000), Eberhardt (2002) and Caswell (2001) (C); golden plover a =

1 yr, w = 6 & 100 yr, emperor penguin a = 5 yr, w = 30 & 100 yr (D).
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Fig. 5. Triangle elasticity patterns based on m1 (l1 = 1.0, R0 = 1 approximation). Contours drawn are for

m1/a (= Mu1/al) = 2.0 and a = 1, 2, 5, and 15 yr. For explanation of symbols see Fig. 4. This is termed a

pseudo-stochastic calculation, see text for details.
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Appendix 1. Vital rates and their sources, and demographic results for shark, turtle, mammal, and bird populations.
a = age at first reproduction (yr); w = age at last reproduction (yr); S1= first year survival; Sj= juvenile survival; Sa= adult survival; m = female fertility; l1 =
population growth; R0 = net reproductive rate;

† 

A  = mean age of reproducing females at the stable age distribution; m1 = mean age of reproducing females in a
cohort; ID = ID used in reference.

Sharks  and rays (Subclass Elasmobranchii)

Common name Scientific  name a w S1 Sj Sa m l Ro

† 

A m1

† 

A /a Reference ID

Australian sharpnose Rhizoprionodon taylori 1 7 0.5179 0.5179 0.5179 2.25 1.6830 2.3934 1.44 2.00 1.44 Cortés (2002) 9a

Australian sharpnose Rhizoprionodon taylori 2 7 0.5179 0.5179 0.5179 2.25 1.0733 1.2280 2.86 2.96 1.43 Cortés (2002) 9b

Blacknose shark Carcharhinus acronatus 3 5 0.3981 0.3981 0.3981 1.25 0.5593 0.1228 3.78 3.46 1.26 Cortés (2002) 1

Bonnethead Spyrna tiburo 2 7 0.5179 0.5179 0.5179 3.75 1.2929 2.0466 2.64 2.96 1.32 Cortés (2002) 23a

Bonnethead Spyrna tiburo 3 7 0.5179 0.5179 0.5179 3.75 1.0103 1.0406 3.87 3.88 1.29 Cortés (2002) 23b

Atlantic sharpnose Rhizoprionodon terranenovae 3 7 0.5179 0.5179 0.5179 2.5 0.9114 0.6938 4.00 3.88 1.33 Cortés (2002) 20a

Atlantic sharpnose Rhizoprionodon terranenovae 4 7 0.5179 0.5179 0.5179 2.5 0.8.043 0.3464 4.98 4.76 1.24 Cortés (2002) 20b

Spot-tail shark Carcharhinus sorrah 2 7 0.5179 0.5179 0.5179 1.55 0.9458 0.8459 3.04 2.96 1.52 Cortés (2002) 14a

Spot-tail shark Carcharhinus sorrah 3 7 0.5179 0.5179 0.5179 1.55 0.8107 0.4301 4.17 3.88 1.39 Cortés (2002) 14b

Brown smooth-hound Mustelus californicus 2 9 0.5995 0.5995 0.5995 1.75 1.1455 1.5441 3.05 3.36 1.53 Cortés (2002) 26a

Brown smooth-hound Mustelus californicus 3 9 0.5995 0.5995 0.5995 1.75 0.9797 0.9152 4.34 4.30 1.45 Cortés (2002) 26b

Pelagic stingray Dasyatis violacea 3 10 0.6310 0.6310 0.6310 3.0 1.1740 1.9907 4.11 4.50 1.37 Mollet and Cailliet (2002) 1

Grey smooth-hound Mustelus henlei 2 13 0.7017 0.7017 0.7017 2.0 1.4033 3.2543 3.00 4.18 1.50 Cortés (2002) 27a

Grey smooth-hound Mustelus henlei 3 13 0.7017 0.7017 0.7017 2.0 1.1890 2.2695 4.41 5.12 1.47 Cortés (2002) 27b

Pacific lesser electric ray Narcine entemedor 3 15 0.7356 0.7356 0.7356 3.0 1.3709 4.4343 4.15 5.54 1.38 C.Villavicencio (p. c.)A 1

Lesser spotted dogfish Scyliorhinus canicula 4 9 0.5995 0.5995 0.5995 52.75 1.7886 16.221 4.50 5.20 1.12 Cortés (2002) 30

Australian blacktip Carcharhinus tilstoni 3 13 0.7017 0.7017 0.7017 1.5 1.1156 1.7021 4.63 5.12 1.54 Cortés (2002) 15a

Australian blacktip Carcharhinus tilstoni 4 13 0.7017 0.7017 0.7017 1.5 1.0286 1.1839 5.92 6.05 1.48 Cortés (2002) 15b

Starspotted smooth-hound Mustelus manazo 5 10 0.6310 0.6310 0.6310 3.0 0.9580 0.7616 6.40 6.31 1.28 Cortés (2002) 28

Ocenanic whitetip Carcharhinus longimanus 5 11 0.6579 0.6579 0.6579 1.55 0.9088 0.5288 6.81 6.53 1.36 Cortés (2002) 10

Common thresher Alopius vulpinus 5 15 0.7356 0.7356 0.7356 2.0 1.0649 1.5743 7.04 7.39 1.41 Cortés (2002) 36

Blue shark Prionaca glauca 5 16 0.7499 0.7499 0.7499 9.25 1.3708 8.4930 6.20 7.61 1.24 Cortés (2002) 18

Smalltail shark Carcharhinus porosus 6 12 0.6813 0.6813 0.6813 1.5 0.8996 0.4386 7.95 7.63 1.33 Cortés (2002) 13

Sandtiger shark Carcharias taurus 6 17 0.7627 0.7627 0.7627 0.5 0.9043 0.3987 9.60 8.73 1.60 Cortés (2002) 37

Sandtiger shark Carcharias taurus 6 25 0.8318 0.8318 0.8318 0.5 0.9961 0.9594 10.50 10.43 1.75 Mollet and Cailliet (2002) 2

Bat ray Myliobatis californica 6 30 0.8577 0.8577 0.8577 1.75 1.1723 4.7903 8.72 11.48 1.45 Martin and Cailliet (1988) 1

Blacktip shark Carcharhinus limbatus 7 10 0.6310 0.6310 0.6310 1.23 0.7631 0.1117 8.26 7.96 1.18 Cortés (2002) 9

Grey reef shark Carcharhinus amblyrhynchus 7 12 0.6813 0.6813 0.6813 1.03 0.8302 0.1982 8.94 8.47 1.28 Cortés (2002) 2

Gummy shark Mustelus antarcticus 7 16 0.7499 0.7499 0.7499 13.0 1.2351 6.5416 8.48 9.40 1.21 Cortés (2002) 25

Shortfin mako Isurus oxyrinchus 7 17 0.7627 0.7627 0.7627 2.54 1.0455 1.5253 9.34 9.63 1.33 Cortés (2002) 32

Spinner shark Carcharhinus brevipinna 8 12 0.6813 0.6813 0.6813 1.75 0.8505 0.2175 9.57 9.28 1.20 Cortés (2002) 4

Silky shark (NWGM) Carcharhinus falciformes 8 14 0.7197 0.7197 0.7197 2.75 0.9551 0.6354 9.94 9.79 1.24 Cortés (2002) 6

Galapagos shark Carcharhinus galagagensis 8 15 0.7356 0.7356 0.7356 2.18 0.9578 0.6466 10.21 10.03 1.28 Cortés (2002) 7

Pelagic thresher Alopias pelagicos 8 30 0.8577 0.8577 0.8577 1.0 1.0560 1.9978 12.13 13.33 1.52 Mollet and Cailliet (2002) 4

Barndoor skate Dipturus laevis 9 15 0.7356 0.7356 0.7356 23.5 1.1624 4.9549 10.43 10.86 1.16 Mollet and Cailliet (2003) 1
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Sharks and rays cont.

Common name Scientific  name a w S1 Sj Sa m l Ro

† 

A m1

† 

A /a Reference ID

Tiger shark Galeocerdo cuvier 9 16 0.7499 0.7499 0.7499 13.75 1.1281 3.7104 10.67 11.11 1.19 Cortés (2002) 16

Pelagic thresher Alopius pelagicus 9 16 0.7499 0.7499 0.7499 1.0 0.8911 0.2699 11.62 11.11 1.29 Cortés (2002) 34

Pacific electric ray Torpedo californica 9 25 0.8318 0.8318 0.8318 8.5 1.2022 9.2069 11.21 13.17 1.25 Neer and Cailliet (2001) 1

White shark Carcharodon carcharias 10 15 0.7356 0.7356 0.7356 2.25 0.9107 0.3324 11.89 11.65 1.19 Cortés (2002) 31

Angel shark Squatina californica 11 22 0.8111 0.8111 0.8111 3.0 1.0271 1.4596 14.01 14.24 1.27 Cortés (2002) 41

Silky shark (SGM) Carcharhinus falciformes 12 22 0.8111 0.8111 0.8111 2.55 0.9990 0.9856 15.08 15.07 1.26 Cortés (2002) 5

Bigeye thresher Alopius superciliosus 12 30 0.8577 0.8577 0.8577 1.0 1.0031 1.0535 16.88 16.94 1.41 Chen et al. (1997) 1

Spiny dogfish (NWA) Squalus acanthia (NWA) 12 40 0.8913 0.8913 0.8913 1.65 1.0759 3.6760 16.70 19.13 1.39 Cortés (2002) 39

Bigeye thresher Alopius superciliosus 13 20 0.7943 0.7943 0.7943 1.0 0.9034 0.2051 15.84 15.36 1.22 Cortés (2002) 35

Lemon shark Negaprion brevirostris 13 21 0.8031 0.8031 0.8031 2.7 0.9759 0.6824 15.76 15.63 1.21 Cortés (2002) 17

Leopard shark Triakis semifasciata 13 24 0.8254 0.8254 0.8254 10.75 1.0998 4.5739 15.61 16.39 1.20 Cortés (2002) 29

Leopard shark Triakis semifasciata 13 30 0.8577 0.8577 0.8577 6.0 1.1040 5.3699 16.29 17.82 1.25 Cailliet (1992) 1

Soupfin shark Galeorhinus galeus 13 53 0.9168 0.9168 0.9168 5.68 1.1769 21.431 16.52 22.82 1.27 Cortés (2002) 25

Porbeagle Lamna nasus 14 22 0.8111 0.8111 0.8111 2.0 0.9572 0.4792 16.94 16.68 1.21 Cortés (2002) 33

Longfin mako Isurus paucus 14 28 0.8483 0.8483 0.8483 0.67 0.9524 0.4043 18.94 18.20 1.35 Mollet unpublished 1

Porbeagle Lamna nasus 14 45 0.9027 0.9027 0.9027 2.0 1.0793 4.7213 19.01 22.02 1.36 Natanson et al. (2002) 1

Scalloped hh (NWGM2) Spyrna lewini 15 22 0.8111 0.8111 0.8111 8.75 1.0285 1.6297 17.32 17.45 1.15 Cortés (2002) 22

Shortspine spurdog Squalus mitsukurii 15 27 0.8432 0.8432 0.8432 0.90 0.9526 0.3960 19.36 18.79 1.29 Cortés (2002) 40

White shark Carcharodon carcharias 15 60 0.9261 0.9261 0.9261 1.48 1.0818 6.1492 20.91 26.15 1.39 Mollet and Cailliet (2002) 5

Sandbar shark Carcharhinus plumbeus 16 24 0.8254 0.8254 0.8254 2.1 0.9596 0.4590 19.03 18.78 1.19 Cortés (2002) 12

Sevengill shark Notorynchus cepedianus 16 45 0.9027 0.9027 0.9027 20.0 1.1898 38.131 19.14 23.82 1.20 VanD and Mollet (2002) 1

Bull shark Carcharhinus leucas 18 24 0.8254 0.8254 0.8254 2.0 0.9374 0.2677 20.50 20.26 1.14 Cortés (2002) 8

Basking shark Cetorhinus maximus 18 40 0.8913 0.8913 0.8913 1.0 1.0030 1.0757 24.35 24.44 1.35 Mollet unpublished 2

Whale shark Rhincodon typus 18 55 0.9197 0.9197 0.9197 75.0 1.2575 198.28 20.72 27.80 1.15 Mollet unpublished 3

Dusky shark Carcharhinus obscurus 19 39 0.8886 0.8886 0.8886 1.54 1.0119 1.3439 24.74 25.06 1.30 Cortés (2002) 11

Copper shark Carcharhinus brachyurus 20 30 0.8577 0.8577 0.8577 3.75 0.9999 0.9971 23.53 23.53 1.18 Cortés (2002) 3

Spiny dogfish (NEP) Squalus acanthias (NEP) 35 81 0.9447 0.9447 0.9447 1.78 1.0306 4.0987 45.20 48.60 1.29 Cortés (2002) 38

Scalloped hhead (WP)B Spyrna lewini (WP) 4 14 0.7197 0.7197 0.7197 13.0 1.5889 12.108 4.83 6.26 1.21 Cortés (2002) 22B

Scall. hhead (NWGM)B Spyrna lewini (NWGM) 15 17 0.7627 0.7627 0.7627 17.5 0.9782 0.7053 15.84 15.82 1.06 Cortés (2002) 21B

Shortfin makoB Isurus oxyrinchus 7 21 0.8031 0.8031 0.8031 2.08 1.0809 2.1909 9.71 10.50 1.39 Pratt and Casey (1983) 1B

Shortfin makoB Isurus oxyrinchus 18 36 0.8799 0.8799 0.8799 2.08 1.0198 1.5798 23.06 23.50 1.28 Natanson et al. (in review) 1B

Turtles (Order Testudines)

Common mud turtle Kinosternon subrubrum 4 24 0.261 0.6720 0.879 0.96 0.9504 0.5865 11.26 9.77 2.81 Heppell (1998) 1

Slider turtle Trachemys scripta 7 42 0.105 0.7646 0.814 1.28 0.8702 0.1443 17.90 11.35 2.56 Heppell (1998) 2

Yellow mud turtle Kinosternon flavescens 11 66 0.191 0.8206 0.95 2.55 1.0094 1.2727 25.06 26.64 2.28 Heppell (1998) 6

Blanding's turtle Emydoidea blandingii 14 84 0.261 0.783 0.96 4.0 1.0008 1.0255 33.64 33.86 2.40 Heppell (1998) 7

Snapping turtle A Chelydra serpentina 19 114 0.064 0.754 0.966 16.18 0.9686 0.1821 64.46 43.81 3.39 Heppell (1998) 8

Snapping turtle B Chelydra serpentina 13 78 0.23 0.7397 0.93 12.0 1.0019 1.0491 25.45 25.73 1.96 Heppell (1998) 9

Desert turtle Gopherus agassizi 15 90 0.47 0.8152 0.941 4.0 1.0211 1.8053 26.59 30.19 1.77 Heppell (1998) 10
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Turtles cont.

Common name Scientific  name a w S1 Sj Sa m l Ro

† 

A m1

† 

A /a Reference ID

Llanos sideneck turtle Podocnemis voglii 10 60 0.6179C 0.6179C 0.92 10.0C 1.0000 1.0000 20.76 20.76 2.08 Heppell (1998) 11

Australian snake-necked t. Chelodina longicollis 10 60 0.6517C 0.6517C 0.98 2.25C 1.0000 1.0000 30.70 30.70 3.07 Heppell (1998) 12

Sonoran mud turtle Kinosternon sonorinese 7 42 0.6539C 0.6539C 0.86 2.75C 1.0000 1.0000 12.98 12.98 1.85 Heppell (1998) 13

Ornate box turtle Terrapene ornata 11 66 0.7832C 0.7832C 0.83 2.50C 1.0000 1.0000 15.88 15.88 1.44 Heppell (1998) 14

Ornate box Terrapene ornata 9 54 0.6922C 0.6922C 0.91 2.50C 1.0000 1.0000 18.50 18.50 2.06 Heppell (1998) 15

Spanish Terrapin Mauremys leprosa 8 48 0.7250C 0.7250C 0.79 2.75C 1.0000 1.0000 11.76 11.76 1.47 Heppell (1998) 16

Gopher tortoise Gopherus polyphemus 11 66 0.7465C 0.7465C 0.9 2.50C 1.0000 1.0000 19.85 19.85 1.80 Heppell (1998) 17

Giant tortoise Geochelone gigantea 23 138 0.7778C 0.7778C 0.97 10.0C 1.0000 0.9999 51.84 51.84 2.25 Heppell (1998) 18

Greek tortoise Testudo graeca 12 72 0.7765C 0.7765C 0.88 2.50C 1.0000 1.0000 19.31 19.31 1.61 Heppell (1998) 19

Geometric tortoise Psammobatis geometricus 6 36 0.5823C 0.5823C 0.61 10.0C 1.0000 1.0000 7.56 7.56 1.26 Heppell (1998) 20

Painted turtleB Chrysemys picta 7 42 0.08 0.83 0.83 6.6 1.0012 1.0142 11.81 11.84 1.69 Heppell (1998) 3B

Painted turtleB Chrysemys picta 7 42 0.67 0.76 0.76 2.8 1.0422 1.5062 9.69 10.16 1.38 Heppell (1998) 4B

Painted turtleB Chrysemys picta 8 48 0.193 0.7673 0.96 2.05 1.0105 1.2582 21.30 22.54 2.66 Heppell (1998) 5B

Loggerhead (U.S.) Caretta caretta 22 132 0.675 0.7190 0.809 76.5 0.9518 0.2651 27.66 26.24 1.26 Heppell (1998) 21

Loggerhead (Australia) Caretta caretta 35 210 0.827 0.8408 0.91 32.54 0.9957 0.8238 45.61 45.11 1.30 Heppell (1998) 22

Kemp's Ridley Lepidochelys kempi 12 72 0.1625 0.6551D 0.7425 105 0.9700 0.6320 15.26 14.88 1.27 Heppell et al. (1996) 23

Kemp's Ridley Lepidochelys kempi 10 60 0.31 0.6509D 0.85 18.75 0.9870 0.8125 16.18 15.65 1.62 Heppell NCEAS (p. c.)E 24

Loggerhead (U.S.) Caretta caretta 34 66 0.37 0.8222 0.893 63.65 0.9745 0.3356 43.00 41.54 1.26 Melissa Snower (p. c.)F 25

Green turtle Chelonia mydas 35 59 0.4394 0.8308 0.9482 60.0 0.9915 0.6844 44.72 44.31 1.28 Chaloupka (2002) 26

Hawksbill turtle Eretmochelys imbricata 14 50 0.01 0.9 0.9 47.29 1.0075 1.1777 21.80 22.23 1.56 Heppell and Crowder (1996) 27

Mammals (Class Mammalia)

Dall’s sheep Ovis dalli 2 12 0.50 0.50 0.88 0.50 0.9604 0.7864 6.14 5.76 3.07 Heppell et al. (2000) 1

Thar Hemitragus jemlahicus 1 12 0.47 0.47 0.85 0.33 0.9753 0.8869 4.93 4.68 4.93 Heppell et al. (2000) 2

Waterbuck Kobus defassa 2 12 0.70 0.70 0.82 0.34 0.9636 0.8212 5.47 5.16 2.73 Heppell et al. (2000) 3

Wildebeest Connochaetes taurinus 2 16 0.5831 0.5831 0.84 0.38 0.9557 0.7485 6.73 6.07 3.37 Heppell et al. (2000) 4

Black-tailed deer A Odocolius hemionus 1 9 0.63 0.63 0.87 0.36 1.0577 1.2465 3.76 4.10 3.76 Heppell et al. (2000) 5

Black-tailed deer B Odocolius hemionus 1 9 0.47 0.47 0.78 0.74 1.1137 1.4120 2.96 3.47 2.96 Heppell et al. (2000) 6

Red deer Cervus elaphus 2 15 0.8832 0.8832 0.80 0.34 1.0474 1.2678 4.90 5.36 2.45 Heppell et al. (2000) 7

Reindeer Rangifer tarandus 2 11 0.70 0.70 0.79 0.45 0.9894 0.9506 4.78 4.72 2.39 Heppell et al. (2000) 8

Warthog Phacochoerus aethiopicus 2 12 0.40 0.40 0.77 1.40 0.9824 0.9190 4.82 4.69 2.41 Heppell et al. (2000) 9

Hippopotamus Hippopotamus amphibius 10 45 0.8977 0.8977 0.94 0.17 0.9930 0.8592 21.93 21.32 2.19 Heppell et al. (2000) 10

Zebra Equus burchelli 3 20 0.8750 0.8750 0.89 0.24 1.0306 1.2822 7.95 8.57 2.65 Heppell et al. (2000) 11

African elephant Loxodonta africana 14 60 0.9606 0.9606 0.94 0.10 0.9960 0.8976 27.47 26.95 1.96 Heppell et al. (2000) 12

Red fox Vulpes vulpes 1 8 0.44 0.44 0.51 1.41 1.1293 1.2603 1.81 2.00 1.81 Heppell et al. (2000) 13

Lion Panthera leo 2 17 0.6325 0.6325 0.90 0.39 1.0346 1.2711 6.76 7.36 3.38 Heppell et al. (2000) 14

Lynx Lynx rufus 1 9 0.88 0.88 0.56 1.15 1.5719 2.2875 1.55 2.22 1.55 Heppell et al. (2000) 15

Black bear Ursus  americanus 5 19 0.7752 0.7752 0.86 0.48 0.9843 0.8599 9.64 9.40 1.93 Heppell et al. (2000) 16

Badger Taxidea taxus 1 11 0.45 0.45 0.53 0.81 0.8933 0.7748 2.42 2.12 2.42 Heppell et al. (2000) 17

Black-footed ferret Mustela nigripes 1 8 0.28 0.28 0.60 1.54 1.0253 1.0599 2.30 2.36 2.30 Heppell et al. (2000) 18
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Vervet monkey Cercopithecus aethiops 5 12 0.7696 0.7696 0.88 0.43 0.9418 0.6195 8.15 7.84 1.63 Heppell et al. (2000) 28

Chimpanzee Pan troglodytes 14 50 0.9218 0.9218 0.95 0.09 0.9746 0.4894 29.13 26.48 2.08 Heppell et al. (2000) 29

Gorilla Gorilla gorilla 8 40 0.9512 0.9512 0.95 0.12 1.0144 1.3124 18.47 19.56 2.31 Heppell et al. (2000) 30

Short-tailed fruit bat Carollia perspicillata 1 10 0.54 0.54 0.66 0.65 1.0058 1.0162 2.76 2.78 2.76 Heppell et al. (2000) 31

Little brown bat Myotis lucifugus 1 12 0.31 0.31 0.86 0.50 0.9843 0.9259 4.96 4.79 4.96 Heppell et al. (2000) 32

Beaver Castor canadensis 1 19 0.46 0.46 0.65 0.71 0.9765 0.9329 2.98 2.85 2.98 Heppell et al. (2000) 33

Coypu Myocastor coypus 2 6 0.4123 0.4123 0.52 2.81 0.9851 0.9573 2.90 2.89 1.45 Heppell et al. (2000) 34

Jumping mouse Zapus princeps 1 6 0.31 0.31 0.59 1.33 0.9830 0.9632 2.21 2.17 2.21 Heppell et al. (2000) 35

Yellow-bellied marmot Marmota flaviventris 2 7 0.4690 0.4690 0.75 1.14 0.9501 0.8245 3.83 3.70 1.92 Heppell et al. (2000) 36

Belding’s ground squirrel Spermophilus beldingi 1 9 0.39 0.39 0.52 1.70 1.1826 1.3774 1.78 2.06 1.78 Heppell et al. (2000) 37

Daurian ground squirrel Spermophilus dauricus 1 7 0.33 0.33 0.54 1.42 1.0024 1.0051 2.07 2.08 2.07 Heppell et al. (2000) 38

Golden-mantled g. squirrel Spermophilus lateralis 1 6 0.21 0.21 0.69 1.56 0.9769 0.9427 2.55 2.50 2.55 Heppell et al. (2000) 39

Columbian g. squirrel A Spermophilus columbianus 1 5 0.30 0.30 0.46 1.86 1.0069 1.0121 1.74 1.75 1.74 Heppell et al. (2000) 40

Columbian g. squirrel B Spermophilus columbianus 1 7 0.40 0.40 0.61 1.01 1.0014 1.0033 2.33 2.34 2.33 Heppell et al. (2000) 41

Columbian g. squirrel C Spermophilus columbianus 2 7 0.6633 0.6633 0.57 1.03 1.0057 1.0177 3.10 3.11 1.55 Heppell et al. (2000) 42

Columbian g. squirrel D Spermophilus columbianus 1 7 0.36 0.36 0.60 1.13 0.9950 0.9885 2.31 2.30 2.31 Heppell et al. (2000) 43

Columbian g. squirrel E Spermophilus columbianus 2 5 0.4690 0.4690 0.72 1.74 0.9999 0.9996 3.10 3.10 1.55 Heppell et al. (2000) 44

Uinta ground squirrel A Spermophilu armatus 1 5 0.33 0.33 0.43 1.62 0.9547 0.9241 1.73 1.68 1.73 Heppell et al. (2000) 45

Uinta ground squirrel B Spermophilu armatus 1 7 0.40 0.40 0.54 1.99 1.3346 1.7073 1.67 2.08 1.67 Heppell et al. (2000) 46

Gray squirrel Sciurus carolinensis 1 7 0.25 0.25 0.60 1.94 1.0769 1.1786 2.14 2.30 2.14 Heppell et al. (2000) 47

Red squirrel Tamiasciurus hudsonicus 1 6 0.33 0.33 0.52 1.90 1.1414 1.2804 1.78 1.96 1.78 Heppell et al. (2000) 48

European hare Lepus europaeus 2 6 0.1732 0.1732 0.51 9.90 0.8354 0.5852 3.10 2.86 1.55 Heppell et al. (2000) 49

Snowshoe hare Lepus americanus 1 4 0.10 0.10 0.20 9.30 1.1291 1.1606 1.21 1.24 1.21 Heppell et al. (2000) 50

Grizzly bear Yellowstone Ursus arctos 4 20 0.8144 0.8144 0.94 0.35 1.0527 1.6698 9.44 10.54 2.36 Eberhardt (2002) 2

Grizzly bear Brit. Col. Ursus arctos 6 20 0.9209 0.9209 0.95 0.42 1.0939 2.7498 10.55 12.05 1.76 Eberhardt (2002) 3

Grizzly bear Swan Mount. Ursus arctos 6 25 0.8313 0.8313 0.90 0.26 0.9777 0.7537 12.86 12.23 2.14 Eberhardt (2002) 4

Feral horse Equus caballus 3 20 0.9726 0.9726 0.97 0.29 1.1603 3.7536 7.35 10.68 2.45 Eberhardt (2002) 6

Elk Yellowstone Cervus elaphus 3 18 0.8707 0.8707 0.99 0.48 1.1999 4.7065 6.94 10.29 2.31 Eberhardt (2002) 8

Moose Alces alces 3 25 0.6768 0.6768 0.95 0.56 1.0899 2.4050 8.77 11.79 2.92 Eberhardt (2002) 10

Caribou Rangifer tarandus 3 16 0.7990 0.7990 0.84 0.40 1.0227 1.1642 6.65 6.91 2.22 Eberhardt (2002) 11

Red deer Cervus elaphus 4 16 0.8532 0.8532 0.95 0.37 1.0762 1.9084 8.33 9.29 2.08 Eberhardt (2002) 12

White-tailed deer Odocoileus virginianus 2 16 0.6403 0.6403 0.70 0.71 0.9919 0.9657 4.32 4.26 2.16 Eberhardt (2002) 13

Giant panda Ailuropoda melanoleuca 4 18 0.8050 0.8050 0.98 0.20 1.0089 1.0978 10.46 10.62 2.61 Eberhardt (2002) 14

Northern fur seal Callorhinus ursinus 3 20 0.6768 0.6768 0.90 0.33 0.9846 0.8695 9.18 8.82 3.06 Heppell et al. (2000) 19

Northern sea lion Eumetopias jubatus 4 26 0.8144 0.8144 0.86 0.28 0.9836 0.8524 9.86 9.40 2.47 Heppell et al. (2000) 20

Harbor seal Phoca vitulina 4 35 0.7208 0.7208 0.89 0.41 0.9984 0.9820 11.38 11.30 2.85 Heppell et al. (2000) 21

Southern elephant seal Mirounga leonina 3 23 0.7047 0.7047 0.80 0.37 0.9413 0.6415 7.95 6.80 2.65 Heppell et al. (2000) 22

Manatee Trichechus manatus 4 50 0.8727 0.8727 0.91 0.19 1.0148 1.2100 12.40 13.55 3.10 Heppell et al. (2000) 23
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Sei whale Balaenoptera borealis 6 60 0.9331 0.9331 0.94 0.11 1.0082 1.1698 18.59 19.77 3.10 Heppell et al. (2000) 24

Gray whale Eschrichtius robustus 8 60 0.8999 0.8999 0.95 0.23 1.0295 1.8479 19.19 23.26 2.40 Heppell et al. (2000) 25

Short-finned pilot whale Globicephala macrorhynchus 7 60 0.9340 0.9340 0.97 0.06 1.0000 1.0007 26.41 26.41 3.77 Heppell et al. (2000) 27

Lysan monk seal Monachus schauinslandi 6 20 0.8721 0.8721 0.90 0.28 0.9980 0.9782 11.14 11.11 1.86 Eberhardt (2002) 1

Manatee Blue Spring Trichechus manatus 4 50 0.9516 0.9516 0.96 0.15 1.0618 2.6236 13.01 19.91 3.25 Eberhardt (2002) 5

Sea otter California Enhydra lutris 3 15 0.8573 0.8573 0.91 0.23 1.0171 1.1377 7.49 7.71 2.50 Eberhardt (2002) 7a

Sea otter California Enhydra lutris 4 15 0.8909 0.8909 0.91 0.23 1.0105 1.0908 8.28 8.40 2.07 Eberhardt (2002) 7b

Weddell seal Leptonychotes weddelli 6 20 0.8039 0.8039 0.99 0.30 1.0099 1.1331 12.63 12.81 2.10 Eberhardt (2002) 9

Fur seal Callorhinus ursinus 5 18 0.8011 0.8011 0.91 0.45 1.0194 1.2092 9.73 10.01 1.95 Eberhardt (2002) 14

Killer whaleB Orcinus orca 13 60 0.9820 0.9820 0.99 0.07 1.0234 2.1155 30.39 34.58 2.34 Heppell et al. (2000) 26B

Killer whaleB Orcinus orca 15 50 0.9836 0.9836 0.99 0.11 1.0327 2.6059 28.11 31.42 1.87 Eberhardt (2002) 17B

Killer whaleB Orcinus orca 14 36 0.9775 0.9847 0.9986 0.1186 1.0321 2.1489 23.56 24.94 1.68 Caswell (2001) 1B

Birds (Class Aves)

Sparrow hawk Accipiter nisus 1 6 0.49 0.59 0.59 0.99 1.0607 1.1333 2.07 2.17 2.07 Saether and Bakke (2000) 1

Common kingfisher Alcedo atthis 1 6 0.22 0.28 0.28 1.62 0.6338 0.4948 1.75 1.39 1.75 Saether and Bakke (2000) 2

Snow goose Anser caerulescens 2 12 0.42 0.82 0.82 1.31 1.1923 2.2240 4.02 5.16 2.01 Saether and Bakke (2000) 3

Meadow pipit Anthus pratensis 1 6 0.28 0.34 0.34 2.13 0.9350 0.9022 1.56 1.51 1.56 Saether and Bakke (2000) 4

Scrub jay Aphelocoma coerulescens 2 12 0.35 0.83 0.83 1.03 1.0907 1.5334 4.61 5.26 2.31 Saether and Bakke (2000) 5

Temmink’s stint Calidris temminckii 1 6 0.21 0.75 0.75 0.61 0.7553 0.4212 3.48 2.70 3.48 Saether and Bakke (2000) 7

Hermit thrush Catharus mustelinus 1 6 0.31 0.61 0.61 0.92 0.8585 0.6936 2.57 2.24 2.57 Saether and Bakke (2000) 9

White stork Ciconia ciconia 3 18 0.30 0.66 0.66 1.24 0.8711 0.4760 5.94 4.92 1.98 Saether and Bakke (2000) 10

Mute swan Cygnus olor 5 30 0.55 0.83 0.83 1.30 1.0796 1.9803 8.30 9.68 1.66 Saether and Bakke (2000) 11

House martin Delichon urbica 1 6 0.17 0.33 0.33 2.43 0.7399 0.6158 1.76 1.48 1.76 Saether and Bakke (2000) 12

Prairie warbler Dendroica discolor 1 6 0.39 0.68 0.68 1.06 1.0655 1.1642 2.33 2.47 2.33 Saether and Bakke (2000) 13

Lesser kestrel Falco naumanni 2 12 0.34 0.71 0.71 0.93 0.9381 0.7563 4.57 4.19 2.29 Saether and Bakke (2000) 16

Pied flycatcher Ficedula hypoleuca 1 6 0.14 0.32 0.32 2.52 0.6686 0.5183 1.85 1.46 1.85 Saether and Bakke (2000) 17

Large cactus finch Geospiza cornirostris 1 6 0.11 0.50 0.50 0.61 0.4707 0.1321 3.68 1.90 3.68 Saether and Bakke (2000) 20

Ground finch Geospiza fortis 1 6 0.74 0.69 0.69 0.32 0.8664 0.6814 2.86 2.50 2.86 Saether and Bakke (2000) 21

Pinyon jay Gymnorhinus cyanocephalus 2 12 0.41 0.72 0.72 0.61 0.9029 0.6258 4.94 4.27 2.47 Saether and Bakke (2000) 22

Oyster catcher Haematopus ostralegus 5 30 0.45 0.90 0.90 0.21 0.9593 0.5800 14.07 12.20 2.81 Saether and Bakke (2000) 23

Acorn woodpecker Melanerpes formicivorus 1 6 0.39 0.58 0.58 1.00 0.9498 0.8932 2.24 2.14 2.24 Saether and Bakke (2000) 25

Song sparrow Melospiza melodia 1 6 0.33 0.62 0.62 1.87 1.2268 1.5317 1.92 2.27 1.92 Saether and Bakke (2000) 26

Eastern screech owl Otus asio 1 6 0.36 0.75 0.75 1.30 1.1884 1.5388 2.31 2.70 2.31 Saether and Bakke (2000) 28

Blue tit Parus caeruleus 1 6 0.16 0.40 0.40 4.23 1.0750 1.1234 1.58 1.64 1.58 Saether and Bakke (2000) 30

Great tit Parus major 1 6 0.22 0.48 0.48 3.90 1.3362 1.6298 1.55 1.85 1.55 Saether and Bakke (2000) 31

Willow tit Parus montanus 1 6 0.50G 0.51 0.51 1.22 1.1144 1.2230 1.79 1.93 1.79 Saether and Bakke (2000) 32

Cliff swallow Pterichlidon pyrrhonata 1 6 0.18 0.57 0.57 0.92 0.6762 0.3719 3.01 2.11 3.01 Saether and Bakke (2000) 35

Eastern bluebird Sialia sialis 1 6 0.50G 0.43 0.43 1.36 1.1077 1.1854 1.61 1.72 1.61 Saether and Bakke (2000) 40

Spotted owl Strix occidentalis 3 18 0.26 0.84 0.84 0.31 0.8766 0.3336 9.60 7.20 3.20 Saether and Bakke (2000) 44
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Common sandpiper Tringa hypoleucos 1 6 0.57 0.64 0.64 0.32 0.7544 0.4719 3.03 2.34 3.03 Saether and Bakke (2000) 46

Spotted sandpiper Tringa macularia 1 6 0.21 0.58 0.58 1.28 0.8135 0.6156 2.58 2.14 2.58 Saether and Bakke (2000) 47

White-crowned sparrow Zonotrichia leucophrys 1 6 0.48 0.55 0.55 1.12 1.0781 1.1616 1.93 2.05 1.93 Saether and Bakke (2000) 49

Golden ploverB Pluvialis apricaria 1 6 0.58 0.76 0.76 0.11 0.6334 0.2146 4.02 2.73 4.02 Saether and Bakke (2000) 34B

Golden ploverB Pluvialis apricaria 1 100 0.58 0.76 0.76 0.11 0.8238 0.2658 12.88 4.17 12.88 Saether and Bakke (2000) 34B

Lesser snow geese Anser caerulescens caerul. 2 12 0.30 0.88 0.88 0.677H 1.0210 1.1249 5.58 5.76 2.79 Rockwell et al. (1997) 1

Spotted owl Strix occidentalis caurina 2 25 0.2828 0.2828 0.94 0.24 0.8989 0.2475 15.60 10.64 7.80 Eberhardt (2002) 17

King penguin Aptenodytes patagonica 6 36 0.47 0.92 0.92 0.13 0.9546 0.4654 18.11 14.97 3.02 Saether and Bakke (2000) 6

South polar skua Catharacta maccormickii 6 36 0.44 0.93 0.93 0.13 0.9610 0.5085 18.42 15.63 3.07 Saether and Bakke (2000) 8

Wandering albatross Diomedea exulans 10 60 0.40G 0.92 0.92 0.45 1.0022 1.0473 20.53 20.76 2.05 Saether and Bakke (2000) 14

Black-browed albatross Diomedea melanophris 10 60 0.52G 0.91 0.91 0.20 0.9673 0.4905 23.50 19.69 2.35 Saether and Bakke (2000) 15

Atlantic puffin Fratercula arctica 5 30 0.78 0.94 0.94 0.41 1.1050 3.3286 10.30 14.16 2.06 Saether and Bakke (2000) 18

Northern fulmal Fulmarus glacialis 8 48 0.88 0.94 0.94 0.18 1.0243 1.5765 17.90 20.14 2.24 Saether and Bakke (2000) 19

Yellow-eyed penguin Megadyptes antipodes 3 18 0.31 0.84 0.84 0.81 1.0054 1.0393 7.12 7.20 2.37 Saether and Bakke (2000) 24

Northern gannet Morus bassanus 5 30 0.35 0.90 0.90 0.38 0.9839 0.8162 12.88 12.20 2.58 Saether and Bakke (2000) 27

Snow petrel Pagodroma nivea 10 60 0.50G 0.94 0.94 0.16 0.9872 0.7314 25.34 23.40 2.53 Saether and Bakke (2000) 29

Shag Phalacrocorax aristotelis 2 12 0.44 0.87 0.87 0.55 1.0446 1.2695 5.28 5.66 2.64 Saether and Bakke (2000) 33

Cory’s shearwater Puffinus diomedea 9 54 0.29 0.92 0.92 0.18 0.9514 0.3277 25.81 19.49 2.87 Saether and Bakke (2000) 36

Short-tailed shearwater Puffinus tenuirostris 6 36 0.50G 0.90 0.90 0.22 0.9684 0.6248 15.59 13.77 2.60 Saether and Bakke (2000) 37

Adelie penguin Pygoscelis adeliae 4 24 0.37 0.89 0.89 0.35 0.9739 0.7581 10.88 10.10 2.72 Saether and Bakke (2000) 38

Black-legged kittiwake Rissa tridactyla 5 30 0.79 0.85 0.85 0.60 1.0516 1.6254 9.11 10.28 1.82 Saether and Bakke (2000) 39

Parasitic jaeger Stercorarius parasiticus 4 24 0.72 0.80 0.80 0.61 1.0141 1.1140 7.59 7.80 1.90 Saether and Bakke (2000) 41

Least tern Sterna antillarum 2 12 0.50G 0.88 0.88 0.56 1.0844 1.5501 5.08 5.76 2.54 Saether and Bakke (2000) 42

Arctic tern Sterna paradisaea 4 24 0.50G 0.87 0.87 0.19 0.9281 0.4554 11.70 9.50 2.92 Saether and Bakke (2000) 43

Ancient murrelet Synthliboramphus antiquus 3 18 0.50G 0.77 0.77 0.75 0.9920 0.9519 6.19 6.10 2.06 Saether and Bakke (2000) 45

Common murre Uria aalge 6 36 0.47 0.95 0.95 0.39 1.0545 2.2583 13.82 17.06 2.30 Saether and Bakke (2000) 48

King penguin Aptenodytes patagonica 6 36 0.49 0.952 0.952 0.155 0.9981 0.9680 17.34 17.21 2.89 Russell (1999) 1

Adelie penguin Pygoscelis adeliae 5 30 0.51 0.894 0.894 0.316 0.9930 0.9185 12.22 11.94 2.44 Russell (1999) 3

Royal penguin Eudyptes schlegeli 7 42 0.67 0.86 0.86 0.245 0.9485 0.4723 15.63 12.98 2.23 Russell (1999) 4

Yellow-eyed penguin Megadyptes antipodes 3 18 0.34 0.871 0.871 0.59 1.0064 1.0503 7.67 7.78 2.56 Russell (1999) 5

Little penguin Eudyptula minor 3 18 0.47 0.858 0.858 0.42 0.9912 0.9351 7.68 7.53 2.56 Russell (1999) 6

Wandering albatross Diomedea exulans 10 60 0.40 0.968 0.968 0.185 1.0124 1.3971 26.04 28.26 2.60 Russell (1999) 7

Royal albatross Diomedea epomophora 9 54 0.87 0.946 0.946 0.25 1.0439 2.3824 18.16 22.64 2.02 Russell (1999) 8

Waved albatross Diomedea irrorata 6 36 0.88 0.959 0.959 0.50 1.1420 6.3273 11.10 17.74 1.85 Russell (1999) 9

Laysan albatross Diomedea immutabilis 9 54 0.76 0.946 0.946 0.235 1.0329 1.9563 19.07 22.64 2.12 Russell (1999) 10

Black-browed albatross Diomedea melanophris 10 60 0.52 0.934 0.934 0.245 1.0005 1.0120 22.47 22.53 2.25 Russell (1999) 11

Grey-headed albatross Diomedea chrysostoma 12 72 0.73 0.947 0.947 0.195 1.0134 1.4222 25.26 27.58 2.11 Russell (1999) 12

Sooty albatross Phoebetrica fusca 12 72 0.77 0.95 0.95 0.13 1.0031 1.0889 27.61 28.21 2.30 Russell (1999) 13

Northern giant petrel Macronectes halli 10 60 0.52 0.906 0.906 0.172 0.9572 0.3888 24.40 19.30 2.44 Russell (1999) 14
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Southern giant petrel Macronectes giganteus 11 66 0.52 0.912 0.912 0.25 0.9763 0.5847 23.92 21.04 2.17 Russell (1999) 15

Bulwer’s petrel Bulweria bulwerii 7 42 0.27 0.947 0.947 0.22 0.9818 0.6946 20.71 18.97 2.96 Russell (1999) 16

Cory’s shearwater Puffinus puffinus 9 54 0.288 0.956 0.956 0.267 1.0027 1.0654 23.71 24.08 2.63 Russell (1999) 17

Manx shearwater Puffinus diomedea 6 36 0.41 0.905 0.905 0.25 0.9691 0.6253 15.90 14.06 2.65 Russell (1999) 18

Northern gannet Sulsa bassanus 5 30 0.35 0.901 0.901 0.50 1.0070 1.0875 11.98 12.25 2.40 Russell (1999) 19

Masked booby Sula dactylatra 4 24 0.37 0.914 0.914 0.33 0.9925 0.9200 11.12 10.88 2.78 Russell (1999) 20

Shag Phalacrocorax aristotelis 3 18 0.398 0.878 0.878 0.65 1.0488 1.4308 7.15 7.92 2.38 Russell (1999) 21

Great skua Catharacta maccormickii 8 48 0.81 0.93 0.93 0.62 1.0925 4.0965 13.67 19.08 1.71 Russell (1999) 22

South Polar skua Catharacta skua 7 42 0.38 0.938 0.938 0.17 0.9769 0.6388 20.26 18.14 2.89 Russell (1999) 23

Thick-billed murre Uria lomvia 5 30 0.64 0.90 0.90 0.28 1.0079 1.0998 11.90 12.20 2.38 Russell (1999) 24

Common murre Uria aalge 5 30 0.47 0.93 0.93 0.395 1.0418 1.6833 11.89 13.64 2.38 Russell (1999) 25

Atlantic puffin Fratercula arctica 6 36 0.47 0.963 0.963 0.335 1.0565 2.4291 14.44 18.05 2.41 Russell (1999) 26

Emperor penguinB Aptenodytes forsteri 5 30 0.19 0.951 0.951 0.32 0.9805 0.7401 15.80 14.75 3.16 Russell (1999) 2B

Emperor penguinB Aptenodytes forsteri 5 100 0.19 0.951 0.951 0.32 1.0003 1.0068 23.54 23.63 4.71 Russell (1999) 2B

AVillavicencio C.. Universidad Autónoma de Baja California Sur A.P. 19-B. La Paz B.C.S., México. CP. 23000; cvilla@calafia.uabcs.mx.
BSpecies that were used as demonstration species with special symbol in Figs. 4 and 5.
CHeppell (1998, her Table 4) did not include fertility and juvenile survival of 10 terrestrial turtles and they were chosen such that l1 = 1.0.
DAge-independent Sj was calculated from the reported juvenile survival rates using (PiSi)

1/(a -1) (product for i from 2 to a).
EHeppell S., 104 Nash Hall, Oregon State University Corvallis, OR 97331; selina.heppell@oregonstate.edu
FSnover M., NMFS Pacific Fisheries Environmental Laboratory, 1352 Lighthouse Avenue,Pacific Grove, California 93950-2097; msnover@pfeg.noaa.gov
GWhen S1 was not available in Saether and Bakke (2000), I used the value given in Russell (1999) or 0.50. My pseudo-stochastic E-patterns in Fig. 5 give the
E-pattern for S1 that gives l1 = 1.0 for these species as used by Saether and Bakke (2000) (and all other species, see text).
HConstant fertility m was determined such that l1 remained the same but I used w = 12 yr instead of w = • yr.
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Appendix 2. Calculation of 

† 

A  and E-patterns for age-structured populations

A2.1 Calculation of 

† 

A  and E-pattern from the characteristic function of a LHT or corresponding Leslie matrix

I assume that a life history table (LHT) of a species is characterized by age at first (a) and last (w) reproduction,

juvenile survival (Sj) up to age a, adult survival (Sa) for ages ≥ a yr, and step-like female fertility (m) for ages ≥ a yr. I

assume that Sj is age-independent to simplify the notation but it is not required, whereas it will be essential to assume that5

Sa and m are age-independent. The characteristic function f (l) (CF) for a LHT or the corresponding Leslie matrice for a

post-breeding census can be written down by inspection of the z-transformed life cycle graph (Caswell 2001, p. 178):

† 

f (l) = m(S j /l)a (Sa /l)0 + m(S j /l)a (Sa /l)1 + ....+ m(S j /l)a (Sa /l)(w-a ) (A2.1)

The same CF applies to a pre-breeding Leslie matrix with discounted fertilities F = mS1 because it is merely a pair of

survival rates within each term that are arranged differently in the life cycle graph. The (w - a + 1) terms of this CF form a10

finite geometrical series if m and Sa are assumed to be age-independent and the sum formula yields:

† 

f (l) =
[m(S j /l)a ][1 - (Sa /l)(w-a +1)]

[1 - (Sa /l)]
(A2.2)

The mean age of the reproducing females at the stable age distribution (

† 

A ) can be calculated from the first

derivative of the CF with respect to l atl = l1 (Cochran and Ellner 1992):

† 

A = -l1 (df /dl)l = l1
(A2.3)15

The CF (eq. A2.2) comprises three terms, each in a square bracket, and the partial derivative with respect to l will produce

three additive terms. Each term can be simplified with the help of the characteristic equation (CE) defined by f (l) = 1:

† 

A = a +
Sa

(l1 - Sa )
-

(w -a +1)(Sa /l1)
(w-a +1)

(1- (Sa /l1)
(w-a +1))

(A2.4)

The second term can be written as (Sa/l1)/[1 - (Sa/l1)] i.e. in terms of the Sa/l1 ratio that appears in the third term. The

critical value of 

† 

A  if (l1 - Sa) Æ 0 and (Sa/l1) Æ 1 is:20

† 

A critical value = (a + w)/2 (A2.5.1)

I use biological reasoning in the text to derive the result. For the mathematical proof, I simplified using y = 

† 

A  - a,

x = Sa/l1, and c = w - a + 1, then converted the (• - •) limit problem to a (0/0) limit problem and used L’Hôpital’s rule

twice to obtain the critical value:
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† 

lim
x Æ1

y =
x

(1- x)
-

c xc

(1- xc )
=

c -1
2

(A2.5.2)

The elasticity of vital rate x (where x = m, Sj, Sa, a, w) is defined as E(x) = dln(l1)/dln(x) = (x/l1) dl1/dx. The

derivative dl1/dx can be calculated from the implicit function f (l), using dl/dx = - (df/dx)/(df/dl). From eq. (A2.3), it

follows that (df/dl)l = l1  = - 

† 

A /l1 and therefore:

E(x) = (x/

† 

A ) (df/dx) (A.2.6)5

which can be calculated for each vital rate and simplified for several. Of most interest for a prospective analysis are the

elasticities of m, Sj, and Sa:

E(m) = E1 = 1/

† 

A (A2.7.1)

E(Sj) = E2 = a/

† 

A (A2.7.2)

E(Sa) = E3 = (

† 

A  - a)/

† 

A (A2.7.3)10

The derivation also proves that

† 

E(Sa ) = (1/ A )[Sa /(l 1 - Sa ) -
(1- (Sa /l 1)

(w-a +1))
(1- (Sa /l 1))

] = (1/ A )[A -a] =1-a / A =1- E(S j ), i.e.

E(Sj) + E(Sa) = 1 (A2.8)

This result corresponds to Hamilton (1966, p. 18 his eq. 10 when a = 0) and Caswell (2001, p. 237) for a homogenous

function of degree 1 to the survival rates Sj and Sa.15

The sum of these three elasticities is (1 + 

† 

A )/

† 

A  = 1 + 1/

† 

A  = 1 + E(m) and the normalized elasticities are:

En(m) = En,1 = 1/(

† 

A  + 1) (A2.9.1)

En(Sj) = En,2 = a/(

† 

A  + 1) (A2.9.2)

En(Sa) = En,3 = (

† 

A  - a)/(

† 

A  + 1) (A2.9.3)

The normalized elasticities (what I call the E-pattern) simply have denominator (

† 

A  + 1) instead of 

† 

A . I suggest that it is20

not helpful to graph the components of the E-patterns of different species against any vital rate, generation time, or

population growth rates  and then attempt to establish correlations. Equations (A2.9) give the exact functional relationship

between En(m), En(Sj), or En(Sj) and a & 

† 

A . Graphs of any component of the E-patterns versus generation time 

† 

A  with a

treated as a parameter are best to understand the E-patterns.

While I assumed that m and Sa are age-independent, which produces a new 3-term formula for 

† 

A , the derived25

formulas for the E-pattern (eqs. A2.7 or A2.9) are exact and can be used for species with age-dependent m and Sa if 

† 

A  is
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calculated from the definition 

† 

A  = Sx(xl-xlxmx) (sum over all x = ages) or from 

† 

A  = <w,v> with w1 = 1 and v1 = 1 (see eq.

A2.14 below). The equation E(m) = 1/

† 

A  (A2.7.1) holds for any discrete Leslie matrix (Hamilton 1966, p. 42 his eq. 25;

Charlesworth 1994, p. 192 his eq. 5.2) and is also applicable for a continuous model based on Lotka’s renewal equation

(Keyfitz 1985, p. 161 his eq. A.5).

A2.2 Elasticities of first and last age of reproduction5

Starting with eq. (A2.6), the elasticities of first (a) and last (w ) age of reproduction are obtained after lengthy

mathematical manipulations including use of the CE:

† 

E(a) = (a / A )[ln(S j /l 1) +
ln(Sa /l 1)(Sa /l 1)

(w-a +1)

(1- (Sa /l 1)
(w-a +1))

] (A2.10.1)

† 

E(w) = -(w / A ) ln(Sa /l 1)(Sa /l 1)
(w-a +1)

(1- (Sa /l 1)
(w-a +1))

(A2.10.2)

Both E(a) and E(w) are inversely proportional to 

† 

A , as are E(m) and E(Sj). E(a) and E(w) should be useful in the study of10

life history variations in an evolutionary perspective.

A2.3 Pseudo-stochastic E-patterns

The vital rates for many species are not well known and accordingly the resulting population growth rates (l1) are

approximate estimates only. A population with l1 >> 1 likely cannot maintain a large l1-value for a long time and a

population with l1 < 1 would become extinct if the declining population growth rate persisted. Over an extended time15

period of many generations, l1 is expected to average out to 1.0 and a stochastic calculation using fluctuating vital rates

would be more appropriate. If the basic vital rates are estimates only and not entirely satisfactory for a deterministic

calculation, a stochastic calculation would be questionable. I suggest that the E-pattern corresponding to l1 = 1.0 is easily

estimated by replacing 

† 

A  with m1 in eqs. A2.9 and I name this a pseudo-stochastic (PS) E-pattern (n = normalized):

En, PS(m)  = En,1 = 1/(m1 + 1) (A2.11.1)20

En, PS(Sj) = En,2 = a/(m1 + 1) (A2.11.2)

En, PS(Sa) = En,3 = (m1 - a)/(m1 + 1) (A2.11.3)

This can be justified as follows: Based on given vital rates for a species and calculated l1 (say > 1.0 and therefore

† 

A  < T < m1), the E-pattern is determined by the intersection of the a and 

† 

A /a contours in Fig. 4. If m remains age-

independent (it does not have to be the same value) and Sa keeps the same value, m1 = Sx(xlxmx)/Sx(lxmx) = Sx(xlx)/Sx(lx)25

(sum over all x = ages) will not change. I now assume that Sj is decreased to produce l1 = 1.0 and we now have
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† 

A  = T = m1. The new value for 

† 

A /a = m1/a will be larger and the new E-pattern corresponding to l1 = 1.0 will have

moved up on the a contour. Conversely, if l1 < 1.0 and therefore 

† 

A  > T > m1, the new E-pattern will be located farther

down on the a contour because the new 

† 

A /a = m1/a will be smaller. The calculations are easily carried out for a large

number of species with a few extra code lines in an Octave script. First the E-patterns are calculated and drawn using 

† 

A ,

as was done in Fig. 4, and then the pseudo-stochastic E-patterns are calculated and drawn using m1, as was done in Fig. 5.5

A2.4 Elasticity ratios

The sum of the elasticity ratios E2 /E1 = En,2 /En,1 and E3 /E1 = En,3 /En,1 is 

† 

A :

E2 /E1 + E3 /E1 = a + (

† 

A  - a) = 

† 

A (A2.12)

The ratio E3/E2 = En,3 /En,2 is related to the (

† 

A /a)-ratio by the following simple equation:

E3/E2 = E(Sa)/E(Sj) = (

† 

A /a) – 1  (A2.13.1)10

which using A2.4 for 

† 

A  gives:

† 

E3 / E2 = (1/a)[ (Sa /l1)
(1- (Sa /l1))

-
(w -a +1)(Sa /l1)

(w-a +1)

(1- (Sa /l1)
(w-a +1))

] (A2.13.2)

Contour plots of E3/E2 using parameter values for w /a of 3, 6, 9, and 12 (i.e. w = ka, k = 3, 6, 9, and 12) are shown in

Figs. 1A, B, C, and D, respectively. The range of x = Sa/l1 is from 0.2 to 1.2 and the range of  y = a is from 1 to 35 yr.

The vertical contour lines when x = Sa/l1 Æ 1 have E3/E2 values of 1.0, 2.5, 4.0 and 5.5 in Figs. 1A, 1B, 1C, and15

1D, respectively. These value agree with the critical values of E3/E2 that can be calculated from eq. (A2.5.1) i.e.

(E3/E2)critical = (

† 

A critical /a) - 1 = [(a + w)/2a] - 1 = [(a + xa )/2a] - 1 = [(1 + x)/2] – 1 = 1, 2.5, 4.0, and 5.5 for x = 3, 6, 9,

and 12, respectively. The first interesting fact is that for w /a £ 3 E3 can at most be equal to E2 (E3/E2 £ 1) for the

populations of most interest which have Sa/l1 £ 1 (Fig. 1A is for w /a = 3). For w /a £ 2 (no figure is shown), E3/E2 is £ 1

for any population including declining populations with Sa/l1 > 1 (Sa > l1, thus l1 < 1.0).20

Second, for given a when moving horizontally to the right in any subplot in Fig. 1, E3/E2 increases as x = Sa/l1

increases (i.e. l1 - Sa decreases). The elasticity of adult survival (E3) becomes more important compared to the elasticity of

juvenile survival (E2) as the difference (l1 - Sa) becomes smaller. When Sa/l1 Æ 1 (Sa - l1 Æ 0) the vertical contour line

has been reached  (which is valid for any a.). If we move further to the right horizontally for given a, E3/E2 increases even

more but such populations are of less interest because Sa/l1 > 1 and thus l1 now must be < 1.0. We have a declining25

population where the fraction of adults in each age class increases with age at the stable age distribution, i.e. the

reproducing females have piled up in the older age classes.
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Third, for given Sa/l1 moving vertically in the y = a direction, there are 3 possible results which are determined

by opposing mathematical factors depending on the value of Sa/l1. The two factors offset each other exactly if Sa/l1 = 1.0

and E3/E2 becomes independent of a which produces a vertical contour line. The results of most interest are for

populations with Sa/l1 < 1 and E3/E2 decreases if y = a increases. In these cases, 

† 

A  increases for increasing a, but E(m) =

1/(

† 

A  + 1) remains large enough that when multiplied by a, it will produce relatively larger E2 compared to E3 and thus5

E3/E2 decreases. Of less interest are the results for populations with Sa/l1 > 1 and therefore l1 < 1. In these cases, 

† 

A 

increases so much (due to the pile-up of adults) that it will produce very small E(m) = 1/(

† 

A  + 1). When multiplied by a

the resulting E2 will become relatively smaller and E3/E2 increases.

A2.5 Comparison of results for post- and pre-breeding censuses

Post-breeding and pre-breeding censuses must yield the same population growth rate (l1), same net reproductive10

rate (Ro), and same generation times (

† 

A , T, and m1) because a population of a species does not know anything about our

census models. Alternatively, I can argue that since the CF’s are identical, the values of l when CF = 1 (i.e. l1) are the

same; the values of the CF at l = 1 are the same, which is the net reproductive rate R0. The derivatives must be also

identical including the derivative at l = l1 which is -

† 

A /l1 and the derivative at l = 1 which is -m1R0./1.0.

The CF’s of post- and pre-breeding censuses are identical and they have the same 

† 

A  as outlined in previous15

paragraph. We also have

† 

A  = <w,v> (A2.14)

if we chose w1 = 1 and v1 = 1 for the calculation of the scalar product (Mollet and Cailliet 2003). However, the age

structure (w-vector) and the reproductive values (v-vector) at the stable age distribution are different unless Sj = Sa.

Therefore, each viwi  product-term in the scalar product <w,v> must be the same for post- and pre-breeding census.20

It is indeed much easier to calculate 

† 

A  as the special scalar product with w1 = 1 and v1 = 1 compared to using eq.

(A2.4) because right and left eigenvectors corresponding to l1 are standard output of matrix programs like PopTools or

GNU Octave. However, for the interpretation of 

† 

A , equation (A2.4) is superior because it comprises only three terms

including two simple ones.

A2.6 Limit values of 

† 

A  for a Leslie matrix model25

For comparison with 

† 

A  of stage-based model, the following limit values (LV) for 

† 

A  in eq. (A2.4) are of interest.

If Sa/l1 < 1.0 (l1 > Sa), the third term in (A2.4) will become zero if w Æ •:

† 

A LV1 (w Æ •) = a + Sa/(l1-Sa)  (A2.15.1)
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If Sa/l1 = 1.0 (l1 = Sa), then the critical value in eq. (A2.5.1) applies (valid for any w):

† 

A LV2 (w Æ •) = (a + w)/2 (A2.5.1) = (A2.15.2)

If Sa/l1 > 1.0 (l1 < Sa, thus l1 < 1.0), the limit value of (A2.4) does not exist if w Æ •  but the following approximation for

Sa/l1 > 1.05 and large w applies:

† 

A LV3 (w Æ •) ª - Sa/(Sa – l1) + w + 1 (A2.15.3)5

A2.7 Comparison of results from Leslie matrix with those from stage-based model with fixed stage duration

The fully age-structured  Leslie matrix and any derived stage-based models using fixed stage duration all have

different CF’s but the l1’s are the same, while 

† 

A , R0 , and m1 are all different. The stage-based models comprise i) the pre-

breeding stage-based model with the adult age-classes in one stage (Heppell et al. 2000 model), ii) the post-breeding stage-

based model with the adult age-classes in one stage, which requires a separate age class for the maturing females, iii)10

various post- and pre-breeding stage-based models with few stages (e.g. 3-stage and 2-stage models). An outline of the

proof comparing the Leslie matrix and the 2-stage pre-breeding matrix follows and empirical calculations showed that it is

correct for all the models mentioned. All these models have different CF’s but the same dominant eigenvalue l1 and

therefore the CF’s intersect at l = l1 where CF(l) = 1. Therefore, since the CF’s are not identical and they are all

continuously decreasing functions of l, the derivatives are different, including the derivatives at l = l1 which is -

† 

A /l1. As15

the CF’s are continuously decreasing functions in the region of interest, they can only cross once and they must have

different values for all values of l other than l = l1 which includes the value when l = 1, which is R0. The derivatives at l

= 1.0 (which are -m1R0/1.0) are different also and thus the m1’s are different.

The CF of the Leslie matrix was given in eq. (A2.2). The CF of a 2-stage model with pre-breeding census can be

read off the life cycle graph after reduction by adsorption of the P1 and P2 self-loops:20

f (l) = [F2/(l - P1)] [G1/(l - P2)] (A2.16)

where F2 = m S1, G1 = Sj g1, P1 = Sj (1 - g1), and P2 = Sa (1 - g2). For fixed state distribution the fractions graduating from

juvenile stage (1) to adult stage (2) and from adult stage to the next stage (death in this case) are given by eq. 6.103 in

Caswell (2001, p. 161):

† 

g i =
(Si /l)Ti - (Si /l)Ti -1

(Si /l)Ti -1
(A2.17)25

where i = 1 for the juvenile stage, i = 2 for the adult stage, T1 = a - 1, and T2 = w - a + 1. The maturing juveniles are in the

adult stage in the pre-breeding census and S1 appears in F2 = m S1.
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We have to show that the two CE’s corresponding to the two CF’s (A2.2) and (A2.16) have the same solution l =

l1. The term 1/(l - P2) in eq. (A2.16) is the only term that involves Sa. Inserting P2 and using several algebraic

manipulations produces the two terms involving only Sa in eq. (A2.2) apart from a factor 1/l. Next F2 and G1 are inserted

into (A2.16) and after several steps the proof is complete if it can be shown that:

† 

l-1 (S j /l)
[l-2 (1- (S j /l)(a-1) (l - P1)]

=1? (A2.18)5

First simplifying and then inserting 1/(l - P1) shows that all the terms on the left cancel and produce 1. Since (A2.18) has

the form of a characteristic function, the equality of (A2.2) and (A2.16) only holds for l = l1.

For stage-based models with post-breeding census, a subtle step in the construction is important to obtain the

same l1 as that from the Leslie matrix from which it was derived. The discounted fertility in a stage-based model with all

the adults in one stage is simply Fa = m S1 when using a pre-breeding census. The corresponding discounted fertility in the10

post-breeding census is sometimes given as Fa = m Pa (e.g. Caswell 2001, p.173, last stage in 6.150) but it should be Fa =

m Sa = m (Pa + Ga). For the proof I assume that the maturing females in both post- and pre-breeding model have adult

survival (Sa = Sadult) so that post- and pre-breeding matrices have exactly the same size and form. The pre-breeding matrix

has S2 to Sa  (= Sadult) on the subdiagonal, Pa on the diagonal, and the discounted fertility is Fa = m S1. The post-breeding

matrix has S1 to Sa-1 on the subdiagonal, Pa on the diagonal, and the discounted fertility matrix element has to be Fa = m Sa,15

otherwise, post- and pre-breeding matrix would not produce the same characteristic equation and the same results.

A2.8 Octave script for the calculation of 

† 

A 

% 1. Calculation of dominant eigenvalue l1 of projection matrix A = F + T

lambda1 = max(eig(A));

% 2. Calculation of Generation Time (GT) and m1 from the fundamental matrix N20

% Note that here ‘T’ is used for Transition Matrix T and Generation Time is abbreviated with GT

N = inv(eye(length(T))-T); % N = (I - T)-1 (Caswell 2001, p. 118)

R = F*N; % Caswell (2001, p. 126, eq. 5.64)

R0 = max(eig(R)) % R0 is dominant eigenvalue of R-matrix

GenerationTime = log(R0)/log(lambda1)  % GT = ln(R0)/ln(l1) = ln(R0)/r25

Mu1Matrix = F*N^2./R0; % After (Cochran and Ellner 1992, Table 2);

% Note that * and ^ implies matrix multiplication, whereas ./ is used for element by element division
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Mu1 = Mu1Matrix(1,1) % m1 is the (1,1) element of the m1-matrix

% 3. Calculation of 

† 

A  from new matrices F* and N*

Fstar = lambda1*F;  % F* = l1 F, this study

Nstar = inv(lambda1*eye(length(T))-T);  % N* = (l1 I - T)-1, this study

AbarMatrix = Fstar*Nstar^2; % This study5

Abar = AbarMatrix(1,1) % 

† 

A  is the (1,1) element of the 

† 

A -matrix  (A2.19)

A2.9 Biased E-patterns for post- and pre-breeding censuses

The biased E-pattern for a post-breeding census if adult survival in the discounted fertilities is excluded is

(needed in Fig. 2H (D-column on left):

E(m)  = 1/

† 

A (A2.20.1)10

Eb(Sj) = (a/

† 

A ) - e1,a (A2.20.2)

Eb(Sa) = 1 - E(m) - Eb(Sj) = 1 - (1/

† 

A ) - (a /

† 

A ) + e1,a

 = 1 - (a /

† 

A ) - [(1/

† 

A ) - e1,a] (A2.20.3)

where e1,a is the ath element in the 1st row of the E-matrix and is given by e1,a, = (Fa/l1)(v1 wa/<w,v>) = (m

Sa/l1)(1/

† 

A )(Sj/l1)
(a - 1). E(Sa) was then calculated assuming that the sum of all three elasticities is 1.0, rather than the15

correct 1 + E(m). The term [(1/

† 

A )-e1,a] is a short-cut to calculate Sje1j (j = a + 1 to w). These biased elasticities sum to 1.0

and do not require normalization.

The biased E-pattern for the pre-breeding census, if survival to age 1 yr in the discounted fertilities is not

included, is more easily calculated because it is only E(Sj) that is underestimated by the elasticity of survival to age 1 yr.

These biased elasticities sum to 1.0 and do not require normalization (needed  in Fig. 2H, D-column on right):20

E(m) = E1 = 1/

† 

A ; (A2.21.1)

E(Sj) = E2 = (a-1)/

† 

A ; (A2.21.2)

E(Sa) = E3 = (

† 

A -a)/

† 

A (A2.21.3)




