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Abstract. Results of demographic analyses of four species of elasmobranchs were compared by use of life-history
tables, Leslie matrices, and several stage-based matrix models. Dasyatis violacea, with few age classes, was used
to demonstrate the basics of Leslie-matrix and stage-based matrix model calculations. The demography for
Carcharias taurus, with a 2-year reproductive cycle, produced higher potential population growth using actual
fertility rather than effective annual fertility. The demography for Alopias pelagicus, with continuous reproduction,
produced higher potential population growth for a birth-flow than a birth-pulse population. The Carcharodon
carcharias example demonstrated only a small difference in potential population growth between step-like and
logistic fertility functions. Stage-based models with fixed stage duration produced potential population growths
identical to those obtained from a life-history table or Leslie matrix, but the net reproductive rates and generation
times differed. Stage-based models with few stages had different dynamics with shorter recovery to the stable age
distribution; they underestimated the elasticity of juvenile survival and overestimated the elasticity of adult survival,
suggesting that interpretation should be cautious. Elasticity analyses were used to estimate the number of juvenile
age classes that could be fished and have the same effect on potential population growth as fishing all the adult age
classes.

Introduction
Age-based (Leslie) or stage-based matrix models for
elasmobranchs are becoming increasingly popular (Hoenig
and Gruber 1990; Cortés 1999, in press; Heppell et al. 1999;
Brewster-Geisz and Miller 2000). The advantages of using
stage-based models had not been adequately explored for
elasmobranchs before Brewster-Geisz and Miller (2000)
first used a stage-based model for an elasmobranch,
Carcharhinus plumbeus (sandbar shark). They suggested
that stage-based models might provide a more realistic view
of the dynamics of some populations and suggested potential
problems with the application of life-history tables (LHTs)
to long-lived marine species because small errors in
parameter estimates can become magnified. Cortés (1999)
introduced a stage-based model for C. plumbeus but then
used a LHT for the calculation of population growth. The
concept of stage-structure is more applicable to plants or
animals such as parasites, crustaceans, insects, cnidarians,
and perhaps turtles, which have more distinct life-history
stages than do elasmobranchs. A stage-structured model
based on maturity or breeding condition invokes the concept
of step-like (also known as knife-edge) changes from one
stage to another. This is clearly not the case for the many
elasmobranchs, which mature over a wide range of lengths
and presumably ages. 

Assessment models developed for marine mammals
rather than teleosts might be more appropriate for

elasmobranchs (Anderson 1990; Walker 1998). Heppell
et al. (1999) applied an age-based matrix model to long-lived
marine species, which included Triakis semifasciata
(leopard shark) and Squatina californica (Pacific angel
shark). Elasticities were summed across age classes to
present management options. Heppell et al. (2000a)
introduced a modified age-classified model, with all the
adult age classes lumped into one stage, for a perturbation
analysis of species with minimal demographic data. The
elasticities compared favourably with the summed
elasticities of full Leslie-matrices and are useful as a
qualitative guide for research and management. Brewster-
Geisz and Miller (2000) used a 5-stage based matrix model
for C. plumbeus, which included a stage for resting females
(proportion of females not giving birth each year), and
presented management options based on elasticity analyses.
Cortés (2000) identified at least three separate life-history
strategies with trade-off between fertility and neonate/
juvenile mortality. Cortés (in press) incorporated uncertainty
into demographic modelling and followed Heppell et al.
(1999) to calculate stage-based elasticities from a life-
history table by summing over age classes. He concluded
that research, conservation and management efforts should
focus on the combined results from elasticity (prospective)
and correlation (retrospective) analyses.

Both Brewster-Geisz and Miller (2000) and Heppell et al.
(2000a) used fixed stage duration to calculate the proportion
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of individual animals graduating to the next stage, which is
most appropriate when the stages are really groups of age
classes (Caswell 2001). However, Brault and Caswell (1993)
used a geometric distribution for Orcinus orca (killer whale)
with good results, although the stages were groups of age
classes. 

In this paper, we compare results of deterministic life-
history tables and/or Leslie-matrices with those of
deterministic stage-based models using four species of
elasmobranchs for which a reasonable amount of life-history
information was available. Our population growth rates are
purely analytical projections assuming that the vital rates are
reasonably accurate, the environment is constant, and that
density effects are unimportant (Caswell 2001). Our
elasticity results can be used to formulate and evaluate
management strategies affecting the vital rates and
population dynamics. This is different from a diagnosis of
why vital rates varied in the past or might vary in the future,
which relies on retrospective perturbation analysis using life-
table response experiments, e.g. random designs based on
variance decomposition (Caswell 2001). 

We use Dasyatis violacea (pelagic stingray) to introduce
the Leslie matrix because it produced a small 10×10 matrix.
We then introduce several stage-based models for D. violacea
and compare elasticities of Leslie matrix and stage-based
models. We use Carcharias taurus (sandtiger shark) to
compare the use of actual and annual effective fertility based
on a reproductive cycle of two years. Alopias pelagicus
(pelagic thresher shark) was chosen to compare birth-pulse
(seasonal parturition) and birth-flow (year-round parturition)
populations of sharks. Carcharodon carcharias (white shark)
was used to explore the difference between step-like and
logistic fertility functions in a life-history table and the
difference between fixed-stage and variable-stage distribution

in a stage-based model. We also used C. carcharias to explore
the difference between fixed-stage and geometric distribution
and then compared the results with data reported for Orcinus
orca (Brault and Caswell 1993).

Methods

Summary of vital parameters of elasmobranchs used in calculation

We used the best available vital parameters taken from the literature for
each of four elasmobranch examples (Table 1). They are age-at-first
reproduction (α), longevity (ω), age-specific natural mortality rate (M)
or corresponding survival probabilities (S), and maturity/fertility
function (m) giving number of female offspring as a function of age or
size. In demographic calculations, the relevant ‘age-at-maturity’ is the
mean age-at-first-reproduction, which would be mean age-at-first-
maturity plus gestation period. However, it is often not clear what the
reported age-at-maturity was based on, and maturity functions giving
fraction mature as a function of length or TL are often not available
either. In all the examples, we assumed that a litter contained 50%
females. The most important vital parameters are the survival
probabilities, for which only rough estimates are available for most
elasmobranchs. We estimated the mortality rate from estimated
longevity (ω) by assuming that 1% of the individuals remain at the
longevity estimate (i.e. M = –ln (0.01)/ω, e.g. Campana et al. 2001). For
Carcharias taurus, we used actual fertility of 1.0 (2 pups, assumed to
be 1 female and 1 male, are born every other year) and the more often
used effective annual fertility of 0.5 (here it is assumed that 0.5 female
pups are born every year). We used longevity of 60 years, producing
survival probability of 92.6% and a reproductive cycle of 3 (m = 8.9/
(2×3) = 1.483), for Carcharodon carcharias in most calculations. We
also used longevity of 36 years with survival probability of 93% and
fertility of 1.2 for the comparison with the Orcinus orca. This allowed
step-like changes of survival probability from 93% to 99% and fertility
from 1.2 to 0.12, which are good approximations for O. orca.

Life history table and Leslie matrix 

We used a standard life-history table (LHT) based on the discrete
Euler–Lotka equation (Caughley 1977) to find the solution
(r = instantaneous rate of population increase (year–1); er = λ, the
natural parameter in the matrix formulation, see below) and other

Table 1. Summary of life-history parameters for elasmobranchs used in this study
α, age-at-first-reproduction; ω, longevity; M, natural mortality rate (estimated as –ln (0.01)/ω); fertility (No. of female pups per litter)

Species α ω M (year–1)(S) Fertility Reference
(years) (years)

Dasyatis violacea 3 10 0.4604 (63.1%) 3 (6/2) Mollet et al. 2002
Carcharias taurus 6 25 0.1842 (83.2%) 0.5 (2/(2×2)) Branstetter and Musick 1994

(annual)
C. taurusA 6 25 0.1842 (83.2%) 1.0 (2/2) Branstetter and Musick 1994

(2-year cycle)
Alopias pelagicus 8 30 0.1535 (85.8%) 1.0 (2/2) Liu et al. 1999
Carcharodon carcharias 15 60 0.07675 (92.6%) 1.483

8.9/(2×3) Cailliet et al. 1985; Francis 1996; Wintner and Cliff
1999; Mollet et al. 2000

C. carchariasB 15 36 (93.0%) 1.20 modified after above

Orcinus orcaB 15 36 (99.0%) 0.12 modified after Brault and Caswell 1993 and
Caswell 2001

AActual female fertility (1.0 female pup every other year) rather than effective annual fertility (0.5 female pups per year). 
BData were modified to permit comparison calculations for C. carcharias and O. orca using fixed stage duration and geometrical distribution for
stage duration.
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population parameters R0, T, µ1, and A
–

for all four elasmobranch
examples. The net reproductive rate R0 is the mean number of pups, by
which a newborn individual will be replaced by the end of its life. The
time T required for the population to increase by a factor of R0 is given
by T = ln R0/ ln λ = ln R0 / r (Coale 1972). Somewhat surprisingly, T is
not equal to any of the several mean ages of ‘pup-bearing’ that can be
defined (Coale 1972). There are three mean ages of reproductively
active females of interest in this context (see Caswell 2001 for details):
(1) The mean age of females bearing pups in a cohort subject to no

mortality, which is not a very meaningful measure in most fish;
(2) The mean age (µ1) of the females bearing pups produced by a

cohort over its lifetime (also known as the mean length of a
generation, and it does not require a stable age distribution)

(3) The mean age (A
–

) of the females bearing pups produced by a
population at the stable age distribution.

If assumed that the survivorship curve (l = l (age)) decreases linearly
with time over the range of interest, then T ~ (A

–
+ µ1)/2 (Coale 1972).

In a stationary population (λ = 1.0), µ1 = A
–
.  

We used a CSIRO program called PopTools (Greg Hood, http://
www.dwe.csiro.au/vbc/poptools/) to calculate many of the life-history
parameters. PopTools is an add-in to Excel and can be used to draw life-
cycle graphs, carry out the basic matrix analysis, calculate sensitivity
and elasticity matrices, and perform projection analysis. An age-
classified matrix model (Leslie matrix) is best understood with the help
of a life-cycle graph (Caswell 2001) (see Fig. 1 for heuristic example).
The nodes in the life-cycle graph represent ω age classes, starting at
i = 1. Individuals in stage i survive, with growth probability Gi to
become 1 year older and create, beginning at α with fertility Fi, new
individuals in the first age class (i = 1) after one projection interval
(usually 1 year). The corresponding Leslie matrix has fertility matrix

Fig. 1. Life cycle graph and Leslie matrix using post-breeding census, birth-pulse, and fixed-stage-duration
distribution of Dasyatis violacea with solution (G = 0.6310 (M = –ln(0.01)/10), m = 3.0, F = mσ = mG).
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elements (Fi values) on the first row starting at α and has growth/
survival probabilities matrix elements (Gi values) on the first sub-
diagonal. We used G rather than the standard P for the survival matrix
elements in the Leslie matrix to get agreement with the notation used
for stage-based models. 

The Leslie matrices for our four examples, including the 10×10
Leslie matrix for Dasyatis violacea shown in Fig. 1, were constructed
using the vital rates from Table 1 and assuming a birth-pulse population
with a post-breeding census. We used a post-breeding census because
the life-cycle graph is easier to understand and because we wanted to
include a 2×2 matrix, the smallest possible matrix, among the stage-
based models for which it is not possible to use a pre-breeding census.
Following Caswell (2001), a birth-pulse population with post-breeding
census has Leslie-matrix elements on the sub-diagonal and first row 

Gi = l (i) / l (i+1) and Fi = Gi mi (=discounted fertility mi), respectively.

This matrix, also known as projection matrix (A), has 10 solutions or
eigenvalues. The largest positive and real solution (λ1 = dominant
eigenvalue) gives the long-term behaviour of the population with
exponential population increase according to n (t+1) = λ1 n (t). The
PopTools solution provides the stable population structure (= age
structure = % individuals in each age class) and the reproductive values
of each age class (e.g. see Fig. 1 for D. violacea). PopTools also
provides r, R0, T, µ1, as well as the fundamental matrix (N) and the
lifetime production matrix (R). The fundamental matrix (N) is given by
N = (I – T)–1, where I is the identity matrix (1’s on the diagonal, 0’s
elsewhere) and T is the matrix in the decomposition of A into transition
matrix (T) and fertility matrix (F) (A = T + F, Cochran and Ellner 1992;
Caswell 2001). The matrix elements of N give the mean time spent in
each age class. We summed the column values of the fundamental
matrix to provide the life expectancy of each age class. 

The subdominant eigenvalues produce oscillations, which usually
decrease over time as the population approaches the stable age
distribution. The rate of convergence to the stable stage distribution
(recovery) is governed by the other eigenvalues (complex conjugates if
not real) and it will be the more rapid, the larger λ1 is relative to
the other eigenvalues. This led to the definition of the damping ratio ρ =
λ1 / |λ2|. The time for the contribution of λ1 to become 10 times as great
as that of λ2 (the second-largest eigenvalues) is t10 = ln (10)/ln (ρ). The
simplest way to determine convergence (recovery) is a numerical
projection. Starting with a stage vector n (t = 0) = [1,0,0] (i.e. a
depressed population after a catastrophic event with one pup in the first
age class and zero individuals in all other age classes at time zero), one
calculates At n (0) = n (t) and checks how long it takes until n (t)
approaches the stable age-class distribution.

The sensitivity matrix, with matrix elements sij = δλ/δaij, is the
matrix comprising the first partial derivative of λ with respect to the
matrix elements aij of A, while all the other matrix elements are held
constant (i = row number, j = column number). The elasticity matrix has
matrix elements (eij = aij/λ δλ/δaij = δ ln (λ)/δ ln aij,), which give the
relative change of λ with respect to the relative change of the matrix
elements of A. We used the symbols E1, E2 and E3 for the sum of the
elasticities of fertility, juvenile survival (including pup age class) and
adult survival, respectively. We note that E1 equals the elasticity of each
juvenile age class (Heppell et al. 1999; Caswell 2001). The sum of the
elasticities E1, E2 and E3 in a post-breeding census is 1 + E1 rather than
1.0, because the adult survival probabilities appear as a lower-level
parameter in the fertilities (Caswell 2001). We defined the elasticity
ratios ER2 ≡ E2/E1 (=α – 1) and ER3 ≡ E3/E1 (=1/E1 – α + 1) (modified
from ratios used by Heppell et al. (1999) and Cortés (in press), who
used a pre-breeding census). We propose that the elasticity ratio of
fertility to adult survival (ER3) can be interpreted in management terms
as the number of juvenile age classes that, if fished ([Fish] =
instantaneous fishing mortality rate), will reduce population growth (λ)

by the same amount as fishing all the adult age classes. Since
elasticities give the proportional changes of λ for proportional changes
of the survival probabilities and S = e–(M+[Fish]) (M = instantaneous
natural mortality rate), it follows that elasticities give the proportional
change of λ for absolute changes of added fishing mortality. If all age
classes/stages are fished, the maximum amount of fishing allowed
before population declines is [Fish] ≤ λ – 1 according to Caswell
(2001). We suggest that zero population growth is reached when [Fish]
= r (instantaneous growth rate) rather than at λ – 1 (Caughley 1977).

Stage-based matrix models 

We used a variety of stage-based models to evaluate the influence of
different stage numbers and stage durations on demographic
parameters for all four elasmobranch examples. First, we used the
simplified age-structured model introduced by Heppell et al. (2000a) in
which all the adult age classes are combined into one stage, but we used
a post-breeding census. For Dasyatis violacea with α = 3 (i.e. only two
juvenile age classes), the Heppell-matrix was a 3×3 matrix with stage
durations 1–1–8 years (Fig. 2). The Heppell model for our three shark
examples had more juvenile age classes and produced the following
transition matrices (A) and (stage durations): 6×6-matrix (1–4×1–20)
for Carcharias taurus (α = 6 and ω = 25); 8×8-matrix (1–6×1–23) for
Alopias pelagicus (α = 8 and ω = 30); 15×15-matrix (1–13×1–46) for
Carcharodon carcharias (α = 15 and ω = 60). 

The nodes in the life-cycle graph represent the juvenile age classes
and one adult stage (Fig. 2 with only two juvenile age classes for
D. violacea). The straight arrows G1 and G2 represent the probability of
age-classes 1 and 2 growing to age-class 2 and adult stage3,
respectively. The probability of growing to the next stage (i.e. post-
reproductive stage or death) would be G3 and is not needed. The in-
stage probability (self-loop) of the adult stage is P3. The reproductive
output of the adult stage is F3 and is called the fertility coefficient. We
first had to calculate the probabilities Pi and Gi for each stage. Caswell
(2001) separated the processes of survival and growth and introduced

σi = probability of survival of an individual in stage i and

γi = fraction of the individuals in stage i that graduate to the next stage.

In terms of these parameters 

Gi = σi γi and 

Pi = σi (1 – γi).

A fixed-stage-duration distribution for both juvenile and adult stages is
most suitable for elasmobranchs because the stages are really groups of
age classes (Heppell et al. 2000a; Brewster-Geisz and Miller 2000;
Caswell 2001). The proportion of individuals in the last age class of a
stage that graduate to the first age class of the next stage is given by

γi = ((σi /λ)T(i) – (σi /λ)T(i)–1))/ ((σi /λ)T(i) – 1).

The calculation of the γ values and λ is an iterative process. One starts
with a suitable λ (say 1.0) and calculates γi, Gi and Pi, and then solves
the matrix for λ. The process is continued until the assumed λ agrees
with the calculated λ and is easily implemented in an Excel spreadsheet
using the Solver tool. The fertility coefficient Fα represents discounted
fertility (m) and is given by F3 = σ3m in a post-breeding census. 

Second, for our three shark examples we used a 3-stage model
comprising a first-year age class (pups), a juvenile stage and an adult
stage. This produced 3×3-matrices with stage durations of 1–4–20 for
Carcharias taurus (α = 6, ω = 25), 1–6–23 for Alopias pelagicus (α = 8,
ω = 30), and 1–13–46 for Carcharodon carcharias (α = 15, ω = 60).

Third, for all four species, we used a 2×2-matrix model comprising
one juvenile stage and one adult stage (Fig. 3 for D. violacea). This



Comparative population demography of elasmobranchs 507

model lumped the first year class with the rest of the juvenile age
classes. The model is similar to the 3-stage model but has two self-loops
(P1 and P2). We wanted to include a 2×2 matrix model that required the
use of a post-breeding census. Therefore we used a post-breeding
census throughout, although the elasticities of fertility, juvenile survival
and adult survival do not sum to one.

Fourth, we used a 4-stage model with stage durations 1–4–1–1 for
Alopias pelagicus in order to be able to include a resting period for adult
females (Brewster-Geisz and Miller 2000). This produces a matrix
element in the 4th column above the diagonal and gives the probability
of a resting female growing to become again a pregnant female. In the
life-cycle graph, this is represented by an arced arrow from stage 4 back
to stage 3. The corresponding simplified age-classified model
following Heppell et al. (2000a) yields a 7×7 matrix with stage
durations 1–4×1–1–1. The Brewster-Geisz matrix has no termination,

and the individuals are potentially immortal (Kirkwood 1985).
Therefore, the life expectancies will be the same for all stages if the
survival probabilities are the same. 

Parturition is seasonal for many elasmobranchs and the birth-pulse
approximation was used therefore in most of our examples. However,
some elasmobranchs have no distinct seasonal parturition, and birth is
spread out throughout the year; birth-flow should be used in such cases.
We chose Alopias pelagicus, with aseasonal parturition to explore the
difference between birth-pulse and birth-flow. In addition, we used
birth-flow with decreasing projection intervals of 6 months (1/2 year),
3 months (1/4 year), and 1 month (1/12 year) to simulate intermediate
steps between birth-pulse and birth-flow. Such intermediate steps
would be appropriate in cases where parturition is spread out over an
extended period but not throughout the year. When projection intervals
other than 1 year were used, mortality and fertility in the corresponding
units had to be used. To allow easy comparison of the results, we
reported the results as annualized parameters. This was not possible for
the unit-less λ, which had to be calculated from the annualized intrinsic
rate of increase (r). 

We used a step-like maturity function in our LHTs, Leslie-matrices,
and stage-based matrix models for most of our examples. In the 3-stage

Fig. 2. Life cycle graph, transition matrix (A) of 3-stage model for
Dasyatis violacea and matrix solution.

Fig. 3. Life cycle graph, transition matrix (A) of 2-stage model for
Dasyatis violacea and matrix solution.
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model of C. carcharias we considered the effects of using (a) a logistic
maturity function in a life-history table and (b) a variable juvenile stage
distribution in the 3-stage model. The fraction of individuals graduating
in the juvenile stage is given by 

γ2 ≈ (1/T2) e (–a (T2/2 – V (T2)/2) (Caswell 2001),

where a = ln (λ/σ2) and T2 = 13 years is the mean duration of the second
stage with variance V (T2) = 3 year2. The variance was estimated from
standard deviation of the logistic maturity function reported for the
shortfin mako (Mollet et al. 2000). 

Brault and Caswell (1993) and Caswell (2001) used the geometric
distribution for Orcinus orca with good results, although the stages are,
as in elasmobranchs, groups of age classes. Therefore, we explored the
use of a geometric stage distribution for Carcharodon carcharias
because the durations of its juvenile and adult stages are similar to those
in O. orca. The geometric distribution for the stage duration assumes
that the probability of growing from stage i to stage i+1 is independent
of the time spent in stage i. The fraction of individuals graduating to the
next stage (γi) is then given by γi = 1/Ti, where Ti is the mean stage
duration of stage i (Caswell 2001). 

Results

Dasyatis violacea

The LHT and the corresponding Leslie matrix for
D. violacea produced identical results and indicated a large
potential annual population growth of 17.4% (λ = 1.1739,
r = 0.1604 year–1; Table 2). A fishing mortality of
0.1604 year–1 across all age classes or stages would produce
a stationary population (λ = 1.0). The damping ratio was 1.4
and the estimated convergence time was 6.6 years. The net
reproductive rate (R0) was 1.99, the generation time (T) was
4.29 year, and the mean age of mature females in a cohort
(µ1) was 4.5 years. The stable age distribution decreased
from 46.4% for the first age class (1) to 0.17% for the last
age class (10), and the reproductive value peaked at 3.46
(12.95%) in the first adult age class (Fig. 1). The fertility,
juvenile survival and adult survival elasticities were 0.244,
0.482 (ER2 = 2.00) and 0.513 (ER3 = 2.11), respectively.
Juvenile and adult survival had similar effects on population

growth, whereas the effect of fertility was about half as large.
A 10% decrease in juvenile or adult survival due to fishing
would require, respectively, a 20% or 21% increase in
fertility to return the population to its original growth rate.
Fishing of both juvenile age classes would have the same
effect as fishing all the adult age classes because ER3 ~ 2.

Our stage-based models produced identical population
growth (17.4% year–1) but the net reproductive rates (R0)
were slightly different (1.87–2.02) because the time spent in
the adult stage was different (Table 2, Figs 2 and 3). The
changes in R0 reflect different adult lifetimes in the various
models because the fertilities (Fi values) remain the same
(3 × 0.631 = 1.893). For example, the mean time spent as an
adult was 1.068 years in the 3-stage model (N3,1 in 3×3
N-matrix), 1.003 years in the 2-stage model (N2,1 in 2×2
N-matrix), and 1.052 years in the Leslie matrix (N-matrix
not included in Fig. 1). 

The stable stage distribution in the 3-stage model (46.4%,
24.9%, and 28.7%) agreed with the summed age distribution
of the corresponding age classes in the Leslie matrix (Fig. 2).
The reproductive values (1.0, 1.86 and 3.46) agreed with the
reproductive values at the beginning age (in the Leslie
matrix) of the corresponding stage (in the 3-stage matrix
model). Similarly, the age distribution (71.3%, 28.7%) and
reproductive values (1.00, 3.46) of the 2-stage model were as
expected.

In the 3-stage model, a D. violacea pup spent, on average,
1 year as a pup, 0.63 year as a 2nd-year juvenile, and
1.07 years as a reproductive adult on the basis of the matrix
elements of N, which give the mean time spent in each stage
(Figs 2 and 3). A mature adult, in contrast, spent an average
of 2.68 years in that stage. The sums of the columns produce
the mean time to death (i.e. the life expectancy) and these
were 2.70, 2.69 and 2.68 years for pups, 2nd-year juveniles
and adults, respectively. Summing the N-matrix columns
produces the mean times to death (i.e. the life expectancies)

Table 2. Summary of demographic results for Dasyatis violacea using life-history table (LHT), Leslie (L) matrix, and stage-based matrix 
models

Age-at-first-maturity 3 years; fertility 3 females per year; longevity 10 years; natural mortality rate -ln (0.01)/10 = 0.4604 year–1 (S = 63.10%) for 
all ages/stages. For complete results of 2B, 2D, and 2E see Figs 1, 2, and 3, respectively. ρ, damping ratio; E1, Elasticity of fertility term (sum if 

more than one term); E2, Elasticities of juvenile survival; ER2, E2/E1; E3, Elasticity of adult survival; ER3, E3/E1

Case Model Stage duration λ1 (ρ) rA (year–1) R0
A T (years) µ1 (years) E1 E2 (ER2) E3 (ER3)

Life history table to age 10 and 10×10 Leslie matrix
2A LHT Age-based 1.1739 0.1604 1.9907 4.29 4.50
2B L 10×10 Age-based 1.1739 (1.4) 0.1604 1.9907 4.29 4.50 0.244 0.487 (2.00) 0.513 (2.11)

Stage-based models with fixed stage duration
2C 9×9 2–(8×1) years 1.1739 (1.9) 0.1604 (1.00) 1.8706 (0.94) 3.91 4.20 0.275 0.422 (1.54) 0.578 (2.11)
2D 3×3B 1–1–8 years 1.1739 (1.5) 0.1604 (1.00) 2.0211 (1.02) 4.39 4.68 0.241 0.482 (2.00) 0.518 (2.15)
2E 2×2 2–8 years 1.1739 (8.6) 0.1604 (1.00) 1.8892 (0.95) 4.00 4.38 0.271 0.417 (1.54) 0.583 (2.15)

AIn parenthesis: ratio compared to LHT/L-matrix results. 
BFor Dasyatis violacea the simplified age classified model (Heppell et al. 2000a) is identical to a 3-stage model because there are only 2 juvenile
age classes.
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for pups, 2nd-year juveniles and adults of 2.70, 2.69 and
2.68 years, respectively. In the 2-stage model, a juvenile
spent on average 1.70 years as a juvenile and 1.00 year as an
adult. An adult, in contrast, spent on average 2.68 years in
that stage. The life expectancies for juveniles and adults were
2.70 and 2.68 years, respectively.

The elasticities of the 3-stage model (= Heppell model)
for D. violacea were similar to that of the Leslie matrix
model (Table 2, No. 2D). The stage-based models, in which
the juvenile age classes were combined in the same stage,
yielded different elasticities and elasticity ratios (Table 2,
Nos 2C, 2E). The elasticity ratio ER2 was smaller than the
elasticity ratio ER3, which suggested that juvenile survival
elasticity is underestimated at the expense of fertility
elasticity and adult survival elasticity. The stage-based
models 2C and 2E also had larger damping ratios of 1.9 and
8.6, respectively. The corresponding recovery times of
3.6 and 1.1 years were much shorter compared with the value
of 6.6 years from the Leslie matrix and suggested that these
models are not suitable for this type of analysis. 

Carcharias taurus

Carcharias taurus has a reproductive cycle of two years and
the demographic results depend on the implementation of
this reproductive cycle (Table 3). Only the Brewster-Geisz
and Miller (2000) model can closely model a reproductive
cycle with a resting period. Use of their model with actual

fertility (1 litter every two years with a resting period in
between) gave a net reproductive rate R0 9% higher (at a
value slightly above 1.0) than that obtained using effective
annual fertility (1/2 litter every year). It produced a slightly
increasing population (λ >1.0), whereas effective annual
fertility produced a slightly decreasing population (λ <1.0).
Generation time (T), µ1 and all the elasticities and their ratios
were similar when the results between the two
implementations were compared, although T <µ1 when
λ <1.0.

When we used effective annual fertility, population
growth of LHT, Leslie-matrix, and three stage-based models
were all the same (Table 3, Nos 3A–3E). The net
reproductive rate (R0), and the generation times (T, µ1) of the
stage-based model were slightly different. The elasticities of
the simplified age-classified Heppell model (3C) were
similar to those of the Leslie matrix, whereas the 3-stage
(3D) and 2 stage (3E) models underestimated the elasticity
of juvenile survival.

When we used actual fertility, population growth and net
reproductive rate of LHT or Leslie matrix were apparently
slightly lower than those in the stage-based models (Table 3,
Nos 3F–3J). The LHT or Leslie matrix were terminated at
age 25, whereas the stage-based models (following
Brewster-Geisz and Miller 2000) have no termination and
therefore produced slightly larger R0 and λ. Generation times
(T) and µ1 of the stage-based model were slightly different

Table 3. Summary of demographic results for Carcharias taurus using life history table (LHT), Leslie (L) matrix, and stage-based matrix 
models

Age-at-first-reproduction, 6 years; fertility, 2/2 = 1 female per litter; longevity, 25 years; natural mortality rate, -ln (0.01)/25 = 0.1842 year–1 

(S = 0.8318%) for all ages/stages. ρ, damping ratio; E1, elasticity of fertility (sum if more than one term); E2, elasticity of juvenile survival; 
ER2 = E2/E1; E3, Elasticity of adult survival; ER3 = E3/E1

Case Model Stage 
durations 

λ1 (ρ) rA (year–1) R0
A T (years) µ1 

(years)
E1 E2 (ER2) E3 (ER3)

Life-history table and stage-based models using annual effective fecundity
3A LHT to 25 Age-based 0.9960 –0.003960 0.9594 10.47 10.43
3B L 25×25 Age-based 0.9960 (1.2) –0.003960 0.9594 10.47 10.43 0.095 0.476 (5.0) 0.524 (5.5)
3C 6×6C 1–(4×1)–20 0.9960 (1.3) –0.003960 (1.0) 0.9580 (0.999) 10.84 10.79 0.092 0.459 (5.0) 0.541 (5.9)
3D 3×3 1–4–20 0.9960 (2.8) –0.003960 (1.0) 0.9613 (1.002) 9.94 9.88 0.100 0.411 (4.1) 0.589 (5.9)
3E 2×2 5–20 0.9960 (1.8) –0.003960 (1.0) 0.9634 (1.004) 9.42 9.35 0.105 0.379 (3.6) 0.621 (5.9)

Life-history table and stage-based models using actual fecundity (c)

3F LHT to 25 Age-based 1.0047D 0.004675 (–1.18) 1.0475 (1.09) 9.93 9.97
3G L 25×25 Age-based 1.0047 (1.0E) 0.004675 (–1.18) 1.0475 (1.09) 9.93 9.97 0.101 0.506 (5.0) 0.494 (4.9)
3H 7×7BC 1–(4×1)–1–1 1.0069 (1.0E)) 0.006916 (–1.75) 1.0745 (1.12) 10.39 10.49 0.097 0.486 (5.0) 0.514 (5.3)
3I 4×4 1–4–1–1 1.0069 (1.3) 0.006916 (–1.75) 1.0678 (1.11) 9.49 9.61 0.107 0.435 (4.1) 0.565 (5.3)
3J 3×3 5–1–1 1.0069 (1.2) 0.006916 (–1.75) 1.0639 (1.11) 8.96 9.09 0.115 0.400 (3.5) 0.600 (5.3)

AIn parenthesis: ratio compared to LHT/L-matrix results.  BSimplified age-classified model (Heppell et al. 2000a).
CWith resting period (Brewster and Miller 2000). 
DThe stage-based models (H–J) following Brewster-Geisz and Miller (2000) have no termination. Therefore the corresponding LHT/Leslie-matrix
with termination at age 25 yield smaller λ and R0. If maximum age is increased to 60 years, λ = 1.0069 and R0 = 1.0745 (rather than 1.0475, no
typos). We cannot use a LHT/Leslie-matrix with maximum age of 60 in this table, because it would be no longer be clear that the increase of λ is
due to use of actual fecundity and not due to increased maximum age.
EDamping ratio 1.0 for these matrices because they are imprimitive. Population still increases exponentially but age structure oscillates and rate
of convergence is not given by the damping ratio, and all subdominant eigenvalues have to be considered (Caswell 2001).
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compared with those in the LHT or Leslie matrix. The
elasticities of the simplified age-classified Heppell model
(3H) were similar to those of the Leslie matrix (3G; ER2 =
5.0, ER3 = 4.9). A 10% decrease in juvenile or adult survival
because of fishing would require a ~50% increase in fertility
to return the population to its original growth rate. Fishing of
~ 5 (i.e. all) juvenile age classes would have the same effect
as fishing all the adult age classes because ER3 = 4.9. The
elasticities from the 3-stage (No. 3I) and 2-stage (No. 3J)
models underestimated the effect of juvenile survival
compared with fertility and adult survival. 

Alopias pelagicus

The demographic results of A. pelagicus from LHT, Leslie-
matrix, and stage-based models using the birth-pulse
approximation produced the same potential population
growth (5.6% year–1; Table 4, Nos 4A–4D). A fishing
mortality of 0.0545 year–1 across all age classes or stages
would produce a stationary population (λ = 1.0). The net
reproductive rate (R0) of the simplified age-classified
Heppell model was a little higher (2.03), and R0 of the
3-stage model was lower (1.84 v. 2.00). The generation times
T = 11.2–12.7 years and µ1 = 12.5–13.3 years were similar.
From the elasticity ratios ER2 = 7.00 and ER3 = 5.1, we
concluded that a 10% decrease in juvenile or adult survival
because of fishing would require unrealistic large increases
of fertility by 70% or 51% to return the population to its
original growth rate. Fishing of ~5 out of 7 juvenile age
classes would have the same effect as fishing all the adult age
classes. The elasticities of the 3-stage model (4D)
underestimated the elasticity of juvenile survival compared
with fertility and adult survival.

Alopias pelagicus has no distinct parturition season, and
a birth-flow population was expected to produce better
demographic results. Annual population growth increased
from 5.6% to 6.6%, when we used a birth-flow rather than a
birth-pulse population (Table 4, Nos 4D–4H). Our
calculations using progressively smaller projection intervals
of 1—2 , 1—4 ,  and 1—12  , years indicated, as expected, a steady
increase of λ between the extremes of birth-pulse and birth-
flow populations. 

Carcharodon carcharias

Population growth of C. carcharias decreased slightly from
8.2% to 7.8% year–1 when we used a logistic fertility
function (10% mature at age 13, 50% mature at age 15)
rather than a step-like fertility function (100% mature at age
15) in our LHT results (Table 5, Nos 5A, 5B). It suggested
that the use of a step-like maturity function produced slightly
biased results. Our calculations indicated that the anticipated
increase of population growth required a logistical function
so spread out (10% mature at age 8) that it was unreasonable.
Population growth increased from 8.2% to 8.7% year–1 when
we used variable stage duration with V2 = 3 in the 3-stage
model (Table 5, Nos 5C, 5D). This was as expected, but
additional calculations indicated that V2 values between 1
and 5 all produced about the same population growth rate
(8.6–8.8% year–1).

The LHT or Leslie-matrix demographic results indicated
potential annual population growth of 8.2%, R0 = 6.2,
T = 23.1 years and µ1 = 26.3 years (Table 6, Nos 6A, 6B). A
fishing mortality of 0.0787 year–1 across all age classes
would produce a stationary population (λ = 1.0). The
elasticities indicated that population growth was most

Table 4. Summary of demographic results for Alopius pelagicus using life history table (LHT), Leslie (L) matrix, and stage-based matrix 
models with fixed stage distribution

Age-at-first-reproduction, 8 years; fertility, 1 female per litter and year; longevity, 30 years; natural mortality rate, -ln (0.01)/30 = 0.1535 year–1 

(S = 85.77%) for all ages/stages. The 3-stage model shows a progression of calculation from birth pulse to birth flow. ρ, damping ratio; 
PI, projection interval; E1, elasticity of fertility (sum if more than one term); E2, elasticity of juvenile survival; ER2, E2/E1; E3, elasticity 

of adult survival; ER3, E3/E1

Case Model Stage durations λ1 (ρ) rA (year–1) R0
A T (years) µ1 (years) E1 E2 (ER2) E2 (ER2)

LHT, Leslie matrix, and simplified age-classified model (Heppell et al. 2000)
4A LHT to 30 Age-based 1.0560 0.05450 1.9977 12.70 13.33
4B L 30×30 Age-based 1.0560 (1.1) 0.05450 1.9977 12.70 13.33 0.082 0.577 (7.0) 0.423 (5.1)
4C 8×8B 1–(6×1)–23 1.0560 (1.2) 0.05450 (1.00) 2.0342 (1.02) 13.03 13.95 0.081 0.570 (7.0) 0.430 (5.3)

3-stage model with fixed stage distribution from birth-pulse to birth-flow

4D Birth-pulse
(PI 1 year)

1–6–23 1.0560 (2.3) 0.05450 (1.00) 1.8366 (0.92) 11.16 12.45 0.099 0.476 (4.8) 0.524 (5.3)

4E PI 1/2 year 2–12–46 1.0608C 0.05901 (1.08) 1.8719 (0.94) 10.63 12.05
4F PI 1/4 year 4–24–92 1.0632C 0.06132 (1.13) 1.8879 (0.95) 10.36 11.86
4G PI 1/12 year 12–72–276 1.0649C 0.06288 (1.15) 1.8979 (0.95) 10.19 11.73
4H Birth-flowD 1–6–23 1.0656 (2.1) 0.06355 (1.17) 1.9510 (0.98) 10.52 12.00 0.108 0.498 (4.6) 0.492 (4.6)
AIn parenthesis: ratio compared to LHT results.  BSimplified age-classified (Heppell et al. 2000a).
CCalculated from annualized instantaneous rate of increase (r).
DUsing F2 = l (0.5) × (G2 m3)/2 and F3 = l (0.5) × (1 + P3) m3/2 with l (0.5) = (P1 + G1)

0.5 (Caswell 2001).



Comparative population demography of elasmobranchs 511

affected by juvenile survival (ER2 = 14) and adult survival
(ER3 = 6.9). A 10% decrease in juvenile or adult survival due
to fishing would require unrealistic large fertility increases
of 140% or 69% to return the population to its original
growth rate. Fishing of ~7 juvenile age classes (out of 14)
would have the same effect as fishing all the adult age
classes.

Our various matrix models with a fixed-stage-duration
distribution produced identical population growth rates
(Table 6, Nos 6C–6E). The Heppell model produced a
slightly higher R0 of 6.3, similar T and µ1, and almost
identical elasticities. The 3-stage and 2-stage model
produced lower R0 values of 4.2 and 3.9, respectively. The R0

values were different because the average times spent as
reproductive adults were different (4.49, 4.61, 3.05 and 2.87
for Leslie-matrix, Heppell, 3-stage and 2-stage model,
respectively). Generation time (T) and µ1 of the 3-stage and
2-stage models were lower but µ1 (24.8 and 24.2 years,
respectively) would provide a better estimate of generation
time. The 3-stage and 2-stage models underestimated the
effect of juvenile survival compared with fertility by a factor

of ~ 2 (ER2 = 7.0 and ER2 = 6.2, respectively, instead of 14).
The 3-stage (No. 6D) and 2-stage (No. 6E) models had larger
damping ratios of 1.53 and 1.44, respectively. The
corresponding recovery times of 5.4 and 6.3 years,
respectively, were considerably shorter compared with the
value of 40 years from the Leslie matrix and indicated that
these models are not suitable for this type of analysis. 

When we used a geometric distribution for the 3-stage
and 2-stage matrix models, we obtained much larger
population growth rates of 16–19% year–1, similar R0 values
of 6.6–6.9, and much lower T and lower µ1 compared with
LHT or Leslie matrix (Table 6, Nos 6F, 6G). This suggested
that a geometric distribution is not suitable for C. carcharias.
In addition, the underestimation of the elasticity of juvenile
survival compared with fertility was even larger (ER2 = 4.8
and ER2 = 3.6 for 3-stage and 2-stage model, respectively),
compared with the value of 14 in the Leslie matrix. 

A comparison of demographic results for Orcinus orca
and C. carcharias, in a series of calculations, indicated that
a fixed-stage distribution also produced better agreement
with the LHT results for O. orca (Table 7, showing only the

Table 5. Comparison of life history table (LHT) with step-like and logistic fertility function (LFF) and 
3-stage model with fixed and variable stage distribution (VST) for Carcharhinus carcharias

Age-at-first-reproduction, 15 years; annual effective fertility, 8.9/2×3 =1.483 females per year; longevity, 
60 years; natural mortality rate, ln (0.01)/60 = 0.07675 year–1 (S = 92.61%) for all ages/stages

Case Model Stage duration λ rA (year–1) R0
A T (years) µ1 (years)

LHT with step-like and logistic fertility function 
5A LHT to 60 Age-based 1.0819 0.07869 (1.00) 6.1630 (1.00) 23.11 26.15
5B LHT to 60 with 

LFF
Age-based 1.0791 0.07613 (0.97) 5.9390 (0.96) 23.40 26.45

3-stage based model with fixed stage and variable stage distribution

5C 3×3 1–13–46 1.0819 0.07869 (1.00) 4.1884 (1.0) 18.20 24.75
5D 3×3 with VST 1–13–46 1.0869 0.08336 (1.06) 4.4289 (1.06) 17.85 24.57

AIn parenthesis: ratio compared to LHT with step-like and 3-stage model with fixed-stage distribution results. 

Table 6. Summary of demographic results for Carcharodon carcharias using life history table (LHT), Leslie (L) matrix, and stage-based 
matrix models

Age-at-first-reproduction, 15 years; annual effective fertility, 8.9/2×3 =1.483 females per year; longevity, 60 years; natural mortality rate, -ln 
(0.01)/60 = 0.07675 year–1 (S = 92.61%) for all ages/stages.  ρ, damping ratio; E1, elasticity of fertility term (sum if more than one term); 

E2, elasticity of juvenile survival; ER2 = E2/E1; E3, elasticity of adult survival; ER3 = E3/E1

Case Model Stage duration λ1 (ρ) rA (year–1) R0
A T (years) µ1 (years) E1 E2 (ER2) E3 (ER3)

Life history table and Leslie matrix
6A LHT to 60 Age-based 1.0819 0.07869 6.1630 23.11 26.15
6B L 60×60 Age-based 1.0819 (1.06) 0.07869 6.1630 23.11 26.15 0.048 0.670 (14) 0.331 (6.9)
Stage-based with fixed stage distribution
6C 15×15B 1–(13×1)–46 1.0819 (1.06) 0.07869 (1.00) 6.3385 (1.03) 23.47 27.51 0.048 0.669 (14) 0.331 (6.9)
6D 3×3 1–13–46 1.0819 (1.53) 0.07869 (1.00) 4.1884 (0.68) 18.20 24.75 0.072 0.503 (7.0) 0.497 (6.9)
6E 2×2 14–46 1.0819 (1.44) 0.07869 (1.00) 3.9462 (0.64) 17.44 24.17 0.073 0.470 (6.2) 0.530 (6.9)
Stage-based with geometric distribution 
6F 3×3 1–13–46 1.1610 (2.83) 0.1493  (1.90) 6.6431 (1.07) 12.68 18.53 0.107 0.513 (4.8) 0.487 (4.6)
6G 2×2 14–46 1.1853 (2.04) 0.1700  (2.16) 6.9027 (1.12) 11.36 17.78 0.127 0.462 (3.6) 0.438 (4.2)

AIn parenthesis: ratio compared to LHT/L-matrix results.    BSimplified age-classified (Heppell et al. 2000a).
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approximations for O. orca and C. carcharias). The fixed-
stage distribution for O. orca produced identical λ but a R0
that, at 2.59, was 1.26 times larger than the LHT result. The
geometric distribution produced lower population growth
(r-ratio 0.82) and lower R0 (ratio 0.92), which might be
considered to be acceptable. For C. carcharias, with lower
survival probability and higher fertility, the fixed-stage
distribution produced a r ratio of 1.0 (excellent) and a R0
ratio of 0.81 (acceptable), whereas the geometric distribution
produced a r ratio of 1.72 (very high and unreasonable
compared with LHT result) and a R0 ratio of 1.07 (good). 

Discussion

Stage-based matrix models 

Our stage-based models with a fixed stage duration
distribution provided the same population growth (λ) as age-
classified LHTs and Leslie matrices; this justified their use,
and they have great potential to tackle more difficult
problems in population analysis. For example, a 20×20
matrix could be used to obtain estimates of population
growth for populations in 5 different oceans with the
inclusion of both sexes. A matrix model is also more suitable
to deal with stochastic models, density-dependent models,
and life-table response experiments (retrospective analysis)
(Caswell 2000). 

Caution is necessary in interpreting R0 and T values of
stage-based models with few stages, and µ1 provides a better

estimate of generation time. Our stage-based model, using a
fixed-stage-duration distribution, produced the same λ as
that obtained with the corresponding Leslie matrix or LHT;
however, R0 and T were lower. To correct this, we would have
to slow down the progress of individuals through the juvenile
stage, which could be done by adding invisible ‘pseudo-
stages’ with a negative binomial stage duration (Caswell
2001). However, this would defeat the purpose of using a
small stage-based matrix, and one might as well use separate
age classes for the juveniles (Heppell et al. 2000a) or the full
Leslie matrix or a LHT. 

The dynamics of the stage-based models with few stages
are different from that of the Leslie matrix. They have larger
damping ratios, which implies that the stable population is
reached faster. This acceleration of individuals through the
stages can also be demonstrated with projection. For
example, using the 3-stage model for C. carcharias and
starting with a state vector [1,0,0] (i.e. one pup and no
juveniles nor adults), a fraction of adults are produced after
only two projection intervals and pups appear after three
projection intervals i.e. three years. This would take 15 years
in the Leslie-matrix model. The Heppell et al. (2000a) model
is much better in this respect because the juvenile age classes
are left as they are, and only the adult age classes are
combined into one stage. Crowder et al. (1994) used a 54×54
Leslie matrix, rather than their 5-stage based model, to study
transient responses in Caretta caretta (loggerhead turtle)
populations. This fast production of pups in matrix models
with few stages was probably the reason that the variable-
stage model with a variance of V(T2) = 3 did not affect λ very
much and different values of V(T2) produced almost
identical results (Table 5, Nos 5C, 5D). 

We suggest that a geometric distribution is not suitable for
elasmobranchs because it produced different population
growth rates compared with Leslie matrix or LHT. For
C. carcharias, the annual population growth doubled from
8.2% to 16.1–18.5% year–1 (Table 6). We suggest that fixed
stage duration is also better for O. orca (Table 7 based on
approximate O. orca vital data) although the geometric
distribution produced good results (Brault and Caswell 1993;
Caswell 2001). When we used exactly the same data as given
in Brault and Caswell (1993) and calculated the stage

Table 7. Comparison of demographic results for Orcinus orca and Carcharodon carcharias using a 3-stage matrix model
α = 15 years; ω = 36 years; stage durations 1–13–22.  O. orca: stage durations were close to those given by Brault and Caswell (1993); survivorship 
of 99% used for all stages.  C. carcharias: longevity (ω) was reduced from 60 to 36 years; survivorship of 93% used for all stages.  Fixed-stage and 

geometric distribution are compared with life history table (LHT) results. S, survivorship probability;  m, effective female fertility per year

Species S m LHT 3×3 fixed stage 3×3 geom. Distribution 
λ r (year–1) R0 r (year–1)A R0

A r (year–1)A R0
A 

O. orca 0.9900 0.12 1.0297 0.02923 2.0473 0.02923 (1.00) 2.5895 (1.26) 0.02394 (0.82) 1.8902 (0.92)

C. carcharias 0.9300 1.20 1.0734 0.07086 4.6026 0.07086 (1.00) 3.7109 (0.81) 0.1221 (1.72) 4.6724 (1.07)

AIn parenthesis: ratios compared to values of LHT.

Table 8. Observed and calculated stage distribution, λ, and R0 for 
Orcinus orca using fixed stage and geometric distribution

ObservedA Fixed-stageB GeometricBC

Yearlings 3.68% 4.03% 3.69%
Juvenile 37.78% 38.75% 31.59%
Reproductive adults 36.27% 34.88% 32.27%
Post-reproductive adults 22.26% 22.34% 32.44%
VarianceD 3.0 157.9
λ 1.0292 1.0277 (0.998) 1.0254 (0.996)
R0 2.214 2.4042 (1.09) 2.0132 (0.91)

AOlesiuk et al. 1990 (R0 from their table 14). BIn parenthesis:  ratios
compared to observed results. CBrault and Caswell (1993). DSum
of variance of 4 stage distributions.
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distribution using a geometric distribution for the stage
duration (duplicating their results) and the fixed-stage
distribution, the latter produced better agreement with the
observed stage distribution (Table 8). 

Population growth is larger if the reproductive cycle is
correctly modelled with pregnant and resting stages, as was
first proposed by Brewster-Geisz and Miller (2000), but this
can also be modelled in a Leslie matrix or LHT. For Alopias
pelagicus, a decreasing population became an increasing
population when we used actual fertility (Table 4). We could
have used actual fertility for C. carcharias based on the
proposed 3-year reproductive cycle (Mollet et al. 2000), and
population growth would have been 9.0% instead of the
reported 8.2% year–1 in Table 6. Even for Carcharhinus
obscurus (dusky shark), with α = 20 years, our calculations
indicated a noticeable increase of population growth to 4.8%
compared with the reported value of 4.3% year–1 by
Simpfendorfer (1999). 

It may be advantageous to keep a separate pup-age class
(3-stage model) compared with inclusion of the pups with
the juveniles (2-stage model), which can be done if survival
probabilities are not known and assumed to be the same. A
separate age class/stage provides a good relative reference
point for many stage-specific traits (e.g. reproductive value).
It also allows the use of a different mortality for the neonates
as has been observed for Mustelus antarcticus (gummy
shark)(Walker 1994), Galeorhinus galeus (school shark)
(Punt and Walker 1998) and Negaprion brevirostris (lemon
shark)(Gruber et al. 2001). 

It is possible to calculate most of data presented here with
a LHT but it would be cumbersome to calculate the matrix
elements of the fundamental matrix N, the sensitivity matrix,
and the elasticity matrix. Even age-structure and
reproductive values are more easily calculated with a matrix
model, be it stage-based or age-based Leslie matrix. This is
especially true if the calculations are carried out with an
easy-to-use program such as PopTools. 

For elasmobranchs with year-round parturition, the birth-
flow approximation is advisable, and this has not been used
previously for any elasmobranch. Our results indicated a
substantial increase from 5.6% to 6.6% year–1 for the
potential annual population growth of A. pelagicus (Table 4).
A birth-flow population would have been appropriate for the
analysis of A. superciliosus (bigeye thresher shark) by Chen
and Liu (1998). It is possible to carry out such calculations
with a Leslie matrix or LHT by using a monthly projection
interval but the size of the Leslie matrix might become too
large.

Sensitivity and elasticity analysis

Sensitivity and elasticity analysis is a useful tool for
population management but has some limitations (Benton
and Grant 1999; Caswell 2000; De Kroon et al. 2000). Cortés
(in press) concluded that research, conservation, and

management efforts should focus on the combined results
from elasticity (prospective) and correlation (retrospective)
analyses. Caswell (2001) suggested that a prospective
analysis using sensitivity or elasticity is more appropriate for
management proposals than the retrospective analysis
proposed by Wisdom and Mills (1997). Sensitivity and
elasticity are simply first derivatives of the functions
λ = λ (aij) and lnλ = lnλ (lnaij), respectively. The results for
our examples are as expected when compared with the
results reported by Heppell et al. (1999) and Cortés (in
press). The use of size limits or prohibition of fishing of
juveniles would be most effective should a population
require management. We propose that the interpretation of
the elasticity ratio (ER3), as the number of fished juvenile
age classes that will have the same effect on population
growth as fishing of all the adult age classes, should be
useful to produce management guidelines for shark
populations. 

We suggest that our predictions are fairly robust, despite
the local nature of elasticities, because the elasticity matrix
elements did not change much after we increased mortality
(which can be considered fishing) until we reached a
stationary population. There is a need for a comparative
analysis of elasticity patterns among stage-based models for
all pelagic elasmobranchs, not just the few we considered,
and alternative decompositions to provide better insight into
the effects of survival, growth and reproduction (Caswell
2001; Heppell et al. 2000b; Cortés in press). The importance
of juvenile survival was reduced in our 3- and 2-stage-based
model compared with Leslie matrix/LHT. It suggested that
caution is required in interpreting elasticity results of stage-
based models with few stages, and apparently it was not
considered by Brewster-Geisz and Miller (2000). 

Monte Carlo calculation

One flaw in our present analysis is the lack of a confidence
band for our population growth estimates. Cortés (in press)
incorporated uncertainty of vital rates into demographic
modelling of 41 shark populations. A Monte Carlo
uncertainly analysis should be carried out because available
demographic data are based on estimates of fertility and few
data on survival are available (Caswell 2001). The Monte
Carlo calculations should be based on survivorship from
model life tables of suitable species, which are re-scaled
according to age-at-maturity, as was done for Phocoena
phocoena (harbor porpoise) by Caswell et al. (1998).
However, we cannot use a stage-based matrix model to do
this, we need to use an age-based matrix model (=Leslie
matrix) (Caswell et al. 1998). 

Age-at-first-reproduction and maternity function

In demographic calculations, the relevant ‘age-at-maturity’
is the mean age-at-first reproduction (α), which is the mean
age-at-maturity plus gestation period. Most reported
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maternity functions do not clearly state if age-at-maturity or
age-at-first-reproduction is reported. For example, the
determination of length-at-first-reproduction of Isurus
oxyrinchus (shortfin mako) by Mollet et al. (2000) was
biased high because mature females, pregnant for the first
time, should have been excluded from the analysis, or their
length-at-capture should have been replaced with an estimate
of length-at-first-reproduction. Alternatively, the length-at-
capture of females, pregnant for the first time, could have
been replaced with estimated length at mating and the
resulting maternity function would have given length-at-
maturity. This might affect the standard deviation of the
maturity function we used for C. carcharias. Our results for
the white shark (Table 5) indicated that the use of a step-like
instead of a more realistic logistic maternity function (also
known as ogive) introduced little bias. However, the logistic
maternity function did not include possible increases of
fertility with maternal size because no data were available.
Preliminary calculations for the shortfin mako (Mollet,
unpublished) had indicated that population growth decreased
when the entire breeding ogive was used (based on data in
Mollet et al. 2000). Xiao and Walker (2000) stressed the
importance of age-at-first-reproduction and the sex ratio at
birth.

Natural mortality rate and longevity 

All our suggestions for improvements are marred by the fact
that we know least about the natural mortality rate (survival
probabilities) of elasmobranchs, the most important
parameter in most demographic analyses. No mortality data
are available for our examples or of elasmobranchs in
general, with the exception of Squalus acanthias (Wood et
al. 1979), adult Raja erinacea (Johnson 1979), Mustelus
antarcticus (Walker 1994, 1998), Galeorhinus galeus (Grant
et al. 1979; Punt and Walker 1998; Punt et al. 2000),
Negaprion brevirostris (Hoenig and Gruber 1990; Gruber
et al. 2001) and Lamna nasus (Aasen 1963; Campana et al.
2001). 

The Siler model, a U-shaped mortality rate v. age curve
with 3 terms, was proposed by Gage (1998) for mammalian
species. Walker (1998) discussed the need of a U-shaped
natural mortality function for elasmobranchs. Xiao and
Walker (2000) pointed out that relating natural mortality rate
to a single quantity, such as maximum age, is overly
simplistic, and that interspecific models are of limited value.
Given the uncertainly of mortality rates for elasmobranchs,
we used a constant mortality rate as a first approximation of
the bottom of the ‘U’ as the best solution. If needed, the left-
hand side of the ‘U’ can be simulated by increasing mortality
of neonates and young juveniles. We propose that this is not
required for our shark examples, which all have large size at
birth. If pups are vulnerable, the corresponding higher
mortality could be absorbed into the fertility term as was
done for Orcinus orca, where only 57% of the calves survive

to age 0.5 years (Olesiuk et al. 1990). The right side of the U
can be approximated by increasing the mortality for older
females or by termination of the life-history table at an
appropriate age. Campana et al. (in press) reported larger
mortality for adult porbeagle than for recruited juveniles.

We estimated mortality from estimated maximum age
(longevity) by the simple requirement that there should be
1% of individuals left at that age. This has the drawback that
mortality is now coupled to longevity, another unknown
parameter and carrying large uncertainty if estimated from a
von Bertalanffy growth curve. Mortality estimates based on
Hoenig (1983) have the same drawback and would have
provided similar estimates as those we used. The Hoenig
(1983) approach applied to our examples would have yielded
slightly lower mortalities with 1.3–2.1% individuals
remaining at the estimated maximum age. 

We have less confidence in other survivorship curves.
Pauly (1980) proposed an interrelationship between natural
mortality, growth parameters and mean environmental
temperature in 175 fish stocks. However, Jenson (1996)
showed that a simple regression without intercept of M v. k
produced a better fit (r2 = 0.74) than the multiple log–log
regression with r2 = 0.71 used by Pauly (1980). Peterson and
Wroblewski (1984) derived a mortality rate based on dry
mass of arrowworms (Phylum Chaetognatha) and larval,
juvenile, and small adult fish by assuming that mortality is
primarily due to predation. This has the potential advantage
that no longevity estimate is needed to estimate mortality.
Because plankton was included it applied to a very large
range of mass magnitudes. We suggest that the model is not
expected to be applicable for large pelagic sharks, which are
top predators, and there is no convincing evidence that
mortality of elasmobranchs, in particular large pelagic
sharks, depends on mass. Cortés (in press), in an uncertainty
analysis of demographic traits of 38 shark species, included
mortality according to a modified Peterson and Wroblewski
(1984) equation by using wet weight as a proxy for dry
weight. We are also apprehensive about the mortality rates
suggested by Chen and Watanabe (1989), which produced
mortalities that are too large for large pelagic
elasmobranchs. 

Comparative life histories among species of elasmobranchs 

Instead of using the exact equation to calculate intrinsic rate
of population increase (r = ln (R0)/T) (i.e. our potential
population increase obtained by solving the Euler-Lotka
equation) or the approximate equation (r ~ ln (R0)/µ1), Frisk
et al. (2001) estimated the potential population growth of
elasmobranchs with r′ = ln (m)/α, where m was female
fertility assuming a 1-year reproductive cycle for all
elasmobranchs, which unfortunately is not true, and the
approximation of ln (R0)/T with ln (m)/α might be
questioned. The intrinsic rebound potential of 26
elasmobranch species reported by Smith et al. (1998) was
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fitted by us with a band defined by two equations of the same
form, with an effective annual fertility of 1.35–1.57
(i.e. r′ = r2M = ln (1.37)/α to ln (1.57)/α). A power regression
produced an even better fit to their results (r2M = ln (1.28)/
α0.809, n = 26, r2 = 0.99), and we suggest that 1.28 can be
interpreted as the effective annual fertility of their method,
which would be the same for all elasmobranchs. Their
intrinsic rebound potential or productivity (r2M) depends
only on age-at-first-production and, accordingly, blue
(Prionace glauca) and sandtiger shark have the same
productivity (0.058 year–1, using our power regression,
compared with the reported value of 0.061 year–1) because
they have the same age-at-first-maturity (6 years); in
contrast, we obtained r = –0.004 to r = 0.007 year–1 for the
sandtiger (Table 3). We suggest that potential population
growth rates based on life-history tables or Leslie matrices,
which provide reasonable elasticity estimates of fertility, and
juvenile and adult mortalities, provide more meaningful
estimates of potential population growth to serve as a basis
for elasmobranch management. Cortés (in press) used a
similar approach and, in addition, incorporated uncertainty
into demographic modelling. Xiao and Walker (2000)
introduced a generalized Lotka equation and suggested that
the data in Smith et al. (1998) will be useful for testing
alternative approaches to their dual equation for calculating
intrinsic rate of increase with time and intrinsic rate of
decrease with age.

Acknowledgments

We dedicate this paper to Greg Hood, the author of PopTools
and are grateful to Matt Levey and Jason Cope for helping us
find this great software package. We are glad that the new
edition (2001) of Hal Caswell’s Matrix Population Analysis
came out when we needed it. We appreciate advice on matrix
population analysis by Karol Brewster-Geisz, Jason Cope,
Enric Cortés, and Selina Heppell. The graphics were done by
Lynn McMasters. H.F.M. acknowledges computer support
provided by the Monterey Bay Aquarium. We acknowledge
Enric Cortés and Terry Walker for greatly improving the
manuscript. This paper is funded in part by a grant from the
National Sea Grant College Program, National Oceanic and
Atmospheric Administration, US Department of Commerce,
under grant number NA66RG0477, project number R/F-
66PD through the California Sea Grant College System, and
in part by the California State Resources Agency.  The views
expressed herein are those of the authors and do not
necessarily reflect the views of NOAA or any of its sub-
agencies.  The US Government is authorized to reproduce
and distribute for governmental purposes.

References

Aasen, O. (1963). Length and growth of the porbeagle (Lamna nasus,
Bonnaterre) in the North West Atlantic. Report of the Norwegian
Fisheries Marine Investigations 13, 20–37.

Anderson, E. D. (1990). Fishery models as applied to elasmobranch
fisheries. In ‘Elasmobranchs as Living Resources: Advances in the
Biology, Ecology, Systematics, and the Status of the Fisheries’. (Eds
H. L. Pratt Jr, S. H. Gruber and T. Taniuchi.) United States
Department of Commerce, NOAA Technical Report NMFS 90,
473–84.

Benton, T. G., and Grant, A. (1999). Elasticity analysis as an important
tool in evolutionary and population ecology. Trends in Ecology and
Evolution 14, 467–71.

Branstetter, S. and Musick J. A. (1994). Age and growth estimates for
the sand tiger in the northwestern Atlantic Ocean. Transactions of
the American Fisheries Society 123, 242-254.

Brault, S., and Caswell, H. (1993). Pod-specific demography of killer
whales (Orcinus orca). Ecology 74, 1444–54.

Brewster-Geisz, K. K., and Miller, T. J. (2000). Management of the
sandbar shark, Carcharhinus plumbeus: implications of a stage-
based model. US National Marine Fisheries Service Fishery
Bulletin 98, 236–49.

Cailliet, G. M., Natanson, L. J., Welden, B. A., and Ebert, D. A. (1985).
Preliminary studies on the age and growth of the white shark,
Carcharodon carcharias, using vertebral bands. Memoirs Southern
California Academy of Sciences 9, 49–60.

Campana, S., Joyce, W., Marks, L., Harley, S. (2001). Analytical
assessment of the porbeagle shark (Lamna nasus) population in the
northwest Atlantic, with estimates of long-term sustainable yield.
Canadian Stock Assessment Research Document 2001/067,
Ottawa, Ontario. 59 pp.

Campana, S., Joyce, W., Marks, L., Hurley, P., Natanson, L. J., Kohler,
N. E., Jensen, C. F., and Myklevoll, S. (in press). The rise and fall
(again) of the porbeagle shark population in the Northwest Atlantic.
In ‘Shark of the Open Ocean’. (Eds M. Camhi and E. Pikitch.)
(Blackwell Scientific: New York.)

Caswell, H. (2000). Prospective and retrospective perturbation
analyses: their roles in conservation biology. Ecology 81, 619–27.

Caswell, H. (2001). ‘Matrix Population Models. Construction,
Analysis, and Interpretation.’ 2nd Edn. (Sinauer: Sunderland, MA.)
722 pp.

Caswell, H., Brault, S., Read, A. J., and Smith, T. D. (1998). Harbor
porpoise and fisheries: an uncertainty analysis of incidental
mortality. Ecological Applications 8, 1226–38.

Caughley, G. (1977). ‘Analysis of Vertebrate Populations.’ (Wiley:
London.)

Chen, C. T., and Liu, K. M. (1998). A preliminary demographic
analysis of the bigeye thresher shark, Alopias superciliosus.
Program and Abstract ASIH and AES Annual Meeting, University
of Guelph, Guelph, Ontario, Canada, July 16–22, without page
numbers.

Chen, S., and Watanabe, S. (1989). Age dependence of natural
mortality coefficient in fish population dynamics. Nippon Suisan
Gakkaishi 55, 205–8.

Coale, A. J. (1972). ‘The Growth and Structure of Human Populations:
a Mathematical Investigation.’ (Princeton University Press:
Princeton, NJ.) 227 pp.

Cochran, M. E., and Ellner, S. (1992). Simple methods for calculating
age-based life history parameters for stage structured populations.
Ecological Monographs 62, 345–64.

Cortés, E. (1999). A stochastic stage-based population model of the
sandbar shark in the western North Atlantic. American Fisheries
Society Symposium 23, 115–36.

Cortés, E. (in press). Incorporating uncertainty into demographic
modeling: Application to shark population and their conservation.
Conservation Biology.

Crowder, L. B., Crouse D. T., Heppell S. S., and Martin T. H. (1994).
Predicting the impact of turtle excluder devices on loggerhead sea
turtle populations. Ecological Applications 4, 437–45.



516 H. F. Mollet and G. M. Cailliet 

http://www.publish.csiro.au/journals/mfr

De Kroon, H., van Groenendael, J., and Ehrlen, J. (2000).
Elasticities: a review of methods and model limitations. Ecology
81, 607–18.

Francis, M. P. (1996). Observations on a pregnant white shark with a
review of reproductive biology. In ‘Great White Sharks. The
Biology of Carcharodon carcharias’. (Eds A. P. Klimley and
D. G. Ainley.) pp. 157–72. (Academic Press: New York.) 

Frisk, M. G., Miller, T. J., and Fogarty, M. J. (2001). Estimation and
analysis of biological parameters in elasmobranch fishes: a
comparative life history study. Canadian Journal of Fisheries and
Aquatic Sciences 58, 969–81.

Gage, T. B. (1998). The comparative demography of primates: with
some comments on the evolution of life histories. Annual Review of
Anthropology 27, 197–221.

Grant, C. J., Sandland, R. L., and Olsen, A. M. (1979). Estimation of
growth, mortality, and yield per recruit of the Australian school
shark, Galeorhinus australis (Macleay), from tag recoveries.
Australian Journal of Marine and Freshwater Research 30, 625–37.

Gruber, S. H., de Marignac, J. R. C., and Hoenig, J. M. (2001). Survival
of juvenile lemon sharks at Bimini, Bahamas, estimated by mark-
depletion experiments. Transaction of the American Fisheries
Society 130, 376–84.

Heppell, S. S., Crowder, L. B., and Menzel, T. R. (1999). Life table
analysis of long-lived marine species with implications for
conservation and management. American Fisheries Society
Symposium 23, 137–48.

Heppell, S. S., Caswell, H., and Crowder, L. B. (2000a). Life histories
and elasticity patterns: perturbation analysis for species with
minimal demographic data. Ecology 81, 654–65.

Heppell, S., Pfister, C., and de Kroon, H. (2000b). Elasticity analysis in
population biology: methods and applications. Ecology 81, 605–6.

Hoenig, J. M. (1983) Empirical use of longevity data to estimate
mortality rates. US National Marine Fisheries Service Fishery
Bulletin 82, 898–903.

Hoenig, J. M. and Gruber, S. H. (1990). Life-history patterns in the
elasmobranchs: implications for fisheries management. In
‘Elasmobranchs as Living Resources: Advances in the Biology,
Ecology, Systematics, and the Status of the Fisheries’. (Eds
H. L. Pratt Jr, S. H. Gruber and T. Taniuchi.) United States
Department of Commerce, NOAA Technical Report NMFS 90,
1–16.

Jenson, A. L. (1996). Beverton and Holt life history invariants result
from optimal trade-off of reproduction and survival. Canadian
Journal of Fisheries and Aquatic Sciences 53, 820–2.

Johnson, G. (1979). The biology of the little skate, Raja erinacea
Mitchell 1825, in Block Island Sound. MS Thesis, University of
Rhode Island, Kingston, 119 pp. (quoted in Hoenig and Gruber
1990).

Kirkwood, T. B. L. (1985). Comparative and evolutionary aspects of
longevity. In ‘Handbook of the Biology of Aging’. 2nd Edn. (Eds
C. E. Finch and E. L. Schneider.) pp. 27–44.

Liu, K.-M., Chen, C.-T., Liao, T.-H., and Joung, S.-J. (1999). Age,
growth, and reproduction of the pelagic thresher shark, Alopias
pelagicus in the northwestern Pacific. Copeia 1999, 68–74.

Mollet, H. F., Cliff, G., Pratt, H. L. Jr, and Stevens, J. D. (2000).
Reproductive biology of the female shortfin mako, Isurus
oxyrinchus Rafinesque, 1810, with comments on the embryonic
development of lamnoids. US National Marine Fisheries Service
Fishery Bulletin 98, 299–318.

Mollet, H. F., Ezcurra, J. M., and O’Sullivan, J. B. (2002). Captive
biology of the pelagic stingray, Dasyatis violacea (Bonaparte,
1832). Marine and Freshwater Research 53, 531–41.

Olesiuk, P. F., Bigg, M. A., and Ellis, G. M. (1990). Life history and
population dynamics of resident killer whales (Orcinus orca) n the
coastal waters of British Columbia and Washington State. In
‘Individual Recognition of Cetaceans’. (Eds P. S. Hammond,
S. A. Mizroch and G. P. Donavan.) Report of the International
Whaling Commission, Special Issue 12, 209–43.

Pauly, D. (1980). On the interrelationships between natural mortality,
growth parameters, and mean environmental temperature in 175
fish stocks. Journal du Conseil. Conseil International pour
l’Exploration de la Mer 39, 195–192.

Peterson, I., and Wroblewski, J. S. (1984). Mortality rate of fishes in the
pelagic ecosystem. Canadian Journal of Fisheries and Aquatic
Sciences 41, 1117–20.

Punt, A. E., and Walker, T. I. (1998). Stock assessment and risk analysis
for the school shark (Galeorhinus galeus) off southern Australia. In
‘Shark Fisheries Management and Biology’. Marine and
Freshwater Research 49, 719–31.

Punt, A. E., Pribac, F., Walker, T. I., Taylor, B. L., and Prince, J. D.
(2000). Stock assessment of school shark Galeorhinus galeus based
on a spatially explicit population dynamics model. Marine and
Freshwater Research 51, 205–20.

Simpfendorfer, C. A. (1999). Demographic analysis of the dusky shark
fishery in southwestern Australia. American Fisheries Society
Symposium 23, 149–60.

Smith, S. E., Au, D. W., and Show, C. (1998). Intrinsic rebound
potentials of 26 species of Pacific sharks. Marine and Freshwater
Research 49, 663–78.

Walker, T. I. (1994). Fishery model of gummy shark, Mustelus
antarcticus, for Bass Strait. In ‘Proceedings of Resource
Technology ’94, New Opportunities Best Practise’. University of
Melbourne, 26–30 September 1994. (Ed. I. Bishop.) pp. 422–38.
(Centre for Geographic Information Systems & Modelling:
University of Melbourne.)

Walker, T. I. (1998). Can shark resources be harvested sustainably? A
question revisited with a review of shark fisheries. Marine and
Freshwater Research 49, 553–72.

Wintner, S. P., and Cliff, G. (1999). Age and growth determination of
the white shark, Carcharodon carcharias, from the east coast of
South Africa. US National Marine Fisheries Service Fishery
Bulletin 97, 153–69.

Wisdom, M. J., and Mills, L. S. (1997). Sensitivity analysis to guide
population recovery: prairie-chickens as an example. Journal of
Wildlife Management 61, 302–12.

Wood, C. C., Ketchen, K. S., and Beamish, R. J. (1979). Population
dynamics of spiny dogfish (Squalus acanthias) in British Columbia
waters. Journal of the Fisheries Research Board of Canada 36,
647–56.

Xiao, Y., and Walker, T. I. (2000). Demographic analysis of gummy
shark and school shark harvested off southern Australia by applying
a generalized Lotka equation and its dual equation. Canadian
Journal of Fisheries and Aquatic Sciences 57, 214–22.

Manuscript received 16 May 2001; revised 8 January, accepted 13
February 2002


